Direct observation of local atomic order in a metallic glass


The determination of the atomic configuration of metallic glasses is a long-standing problem in materials science and solid-state physics1,2. So far, only average structural information derived from diffraction and spectroscopic methods has been obtained. Although various atomic models have been proposed in the past fifty years3,4,5,6,7,8, a direct observation of the local atomic structure in disordered materials has not been achieved. Here we report local atomic configurations of a metallic glass investigated by nanobeam electron diffraction combined with ab initio molecular dynamics simulation. Distinct diffraction patterns from individual atomic clusters and their assemblies, which have been theoretically predicted as short- and medium-range order6,7,8, can be experimentally observed. This study provides compelling evidence of the local atomic order in the disordered material and has important implications in understanding the atomic mechanisms of metallic-glass formation and properties.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Experimental scheme of NBED.
Figure 2: Statistical analysis of interatomic spacings obtained from NBED and simulation.
Figure 3: Structural model of glassy Zr66.7Ni33.3 obtained by ab initio molecular dynamics simulation.
Figure 4: Local atomic structure of glassy Zr66.7Ni33.3 determined by the combination of NBED with simulation.
Figure 5: Characterization of MRO by NBED.


  1. 1

    Elliott, S. R. Physics of Amorphous Materials 2nd edn (Longman, 1990).

    Google Scholar 

  2. 2

    Yavari, A. R. Materials science: A new order for metallic glasses. Nature 439, 405–406 (2006).

    CAS  Article  Google Scholar 

  3. 3

    Bernal, J. D. Geometry of the structure of monatomic liquids. Nature 185, 68–70 (1960).

    Article  Google Scholar 

  4. 4

    Gaskell, P. H. A new structural model for transition metal–metalloid glasses. Nature 276, 484–485 (1978).

    CAS  Article  Google Scholar 

  5. 5

    Gaskell, P. H. in Amorphous Metals (eds Matyja, H. & Zielinski, P. G.) 35–57 (World Scientific Publishing, 1985).

    Google Scholar 

  6. 6

    Miracle, D. B. A structural model for metallic glasses. Nature Mater. 3, 697–702 (2004).

    CAS  Article  Google Scholar 

  7. 7

    Miracle, D. B. The efficient cluster packing model—an atomic structural model for metallic glasses. Acta Mater. 54, 4317–4336 (2006).

    CAS  Article  Google Scholar 

  8. 8

    Sheng, H. W., Luo, W. K., Alamgir, F. M. & Ma, E. Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419–425 (2006).

    CAS  Article  Google Scholar 

  9. 9

    Cheng, Y. Q., Ma, E. & Sheng, H. W. Atomic level structure in multicomponent bulk metallic glass. Phys. Rev. Lett. 102, 245501 (2009).

    CAS  Article  Google Scholar 

  10. 10

    Ma, D., Stoica, A. D. & Wang, X-L. Power-law scaling and fractal nature of medium-range order in metallic glasses. Nature Mater. 8, 30–34 (2009).

    CAS  Article  Google Scholar 

  11. 11

    Fujita, T. et al. Atomic-scale heterogeneity of a multicomponent bulk metallic glass with excellent glass forming ability. Phys. Rev. Lett. 103, 075502 (2009).

    CAS  Article  Google Scholar 

  12. 12

    Xi, K. X. et al. Correlation of atomic cluster symmetry and glass-forming ability of metallic glass. Phys. Rev. Lett. 99, 095501 (2007).

    Article  Google Scholar 

  13. 13

    Keen, D. A. & McGreevy, R. L. Structural modeling of glasses using reverse Monte Carlo simulation. Nature 344, 423–425 (1990).

    CAS  Article  Google Scholar 

  14. 14

    McGreevy, R. L. Reverse Monte Carlo modeling. J. Phys. Condens. Matter 13, R877–R913 (2001).

    CAS  Article  Google Scholar 

  15. 15

    Fukunaga, T. et al. Voronoi analysis of the structure of Cu–Zr and Ni–Zr metallic glasses. Intermetallics l4, 893–897 (2006).

    Article  Google Scholar 

  16. 16

    Spence, J. C. H. & Zuo, J. M. Electron Microdiffraction (Plenum, 1992).

    Google Scholar 

  17. 17

    Wang, Z. L. Elastic and Inelastic Diffraction and Imaging (Plenum, 1995).

    Google Scholar 

  18. 18

    Cowley, J. M. Diffraction Physics 3rd edn (Elsevier, 1995).

    Google Scholar 

  19. 19

    Williams, D. B. & Carter, C. B. Transmission Electron Microscopy Vol. II (Plenum, 1996).

    Google Scholar 

  20. 20

    Hirotsu, Y., Ohkubo, T. & Matsushita, M. Study of amorphous alloy structures with medium range atomic ordering. Microsc. Res. Tech. 40, 284–312 (1998).

    CAS  Article  Google Scholar 

  21. 21

    Cowley, J. M. Electron nanodiffraction methods for measuring medium-range order. Ultramicroscopy 90, 197–206 (2002).

    CAS  Article  Google Scholar 

  22. 22

    Xu, Y., Muir, W. B., Altounian, Z., Buyers, W. J. L. & Donaberger, R. L. Consistent partial structure factors for amorphous Ni0.33(ZryHf1−y)0.67 using X-ray and neutron diffraction. Phys. Rev. B 53, 8983–8992 (1996).

    CAS  Article  Google Scholar 

  23. 23

    de Lima, J. C. et al. Structural study of an amorphous NiZr2 alloy by anomalous wide-angle X-ray scattering and reverse Monte Carlo simulations. Phys. Rev. B 67, 094210 (2003).

    Article  Google Scholar 

  24. 24

    Liu, X. J. et al. Ordered clusters and free volume in a Zr–Ni metallic glass. Appl. Phys. Lett. 93, 011911 (2008).

    Article  Google Scholar 

  25. 25

    Hao, S. G. et al. Experimental and ab initio structural studies of liquid Zr2Ni. Phys. Rev. B 79, 104206 (2009).

    Article  Google Scholar 

  26. 26

    Finney, J. L. Modeling structures of amorphous metals and alloys. Nature 266, 309–314 (1977).

    CAS  Article  Google Scholar 

  27. 27

    Borodin, V. A. Local atomic arrangements in polytetrahedral materials. Phil. Mag. A 79, 1887–1907 (1999).

    CAS  Article  Google Scholar 

  28. 28

    Kirkland, E. J. Advanced Computing in Electron Microscopy (Plenum, 1998).

    Google Scholar 

  29. 29

    Malis, T., Cheng, S. C. & Egerton, R. F. EELS log-ratio technique for specimen thickness measurement in the TEM. J. Electron Microsc. Tech. 8, 193–200 (1988).

    CAS  Article  Google Scholar 

  30. 30

    Anazawa, K., Hirotsu, Y. & Inoue, Y. Microstructural change in the course of decomposition of an amorphous Pd82Si18 alloy. Acta Metall. Mater. 42, 1997–2007 (1994).

    CAS  Article  Google Scholar 

  31. 31

    Hirata, A., Hirotsu, Y., Matsubara, E., Ohkubo, T. & Hono, K. Mechanism of nanocrystalline microstructure formation in amorphous Fe–Nb–B alloys. Phys. Rev. B 74, 214206 (2006).

    Article  Google Scholar 

  32. 32

    Lin, J. A. & Cowley, J. M. Calibration of the operating parameters for an HB5 STEM instrument. Ultramicroscopy 19, 31–42 (1986).

    Article  Google Scholar 

  33. 33

    Kresse, G. & Furthmüller, J. Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS  Article  Google Scholar 

  34. 34

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  35. 35

    Wang, Y. & Perdew, J. P. Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling. Phys. Rev. B 44, 13298–13307 (1991).

    CAS  Article  Google Scholar 

Download references


This work was sponsored by ‘Global COE for Materials Research and Education’, ‘World Premier International (WPI) Research Center Initiative for Atoms, Molecules and Materials’, MEXT, Japan. It was also partly supported by Grant-in-Aid for Scientific Research (S) (20226013) JSPS. We thank M. Hasegawa of Nagoya University for providing the Zr66.7Ni33.3 metallic-glass ribbons.

Author information




A.H. and M.C. designed and carried out research, analysed data and wrote the paper. P.G. and T.F. contributed to simulations. Y.H., A.I., A.R.Y. and T.S. contributed to analysing the data.

Corresponding author

Correspondence to Mingwei Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hirata, A., Guan, P., Fujita, T. et al. Direct observation of local atomic order in a metallic glass. Nature Mater 10, 28–33 (2011).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing