Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics

Abstract

Inorganic light-emitting diodes and photodetectors represent important, established technologies for solid-state lighting, digital imaging and many other applications. Eliminating mechanical and geometrical design constraints imposed by the supporting semiconductor wafers can enable alternative uses in areas such as biomedicine and robotics. Here we describe systems that consist of arrays of interconnected, ultrathin inorganic light-emitting diodes and photodetectors configured in mechanically optimized layouts on unusual substrates. Light-emitting sutures, implantable sheets and illuminated plasmonic crystals that are compatible with complete immersion in biofluids illustrate the suitability of these technologies for use in biomedicine. Waterproof optical-proximity-sensor tapes capable of conformal integration on curved surfaces of gloves and thin, refractive-index monitors wrapped on tubing for intravenous delivery systems demonstrate possibilities in robotics and clinical medicine. These and related systems may create important, unconventional opportunities for optoelectronic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Device layouts of μ-ILED arrays and their responses to uniaxial and balloon-shape biaxial stretching.
Figure 2: Responses of μ-ILED arrays to twisting and to stretching on sharp tips.
Figure 3: Multilayer laminated configurations of arrays of μ-ILEDs for high effective area coverage and integration on various unusual substrates.
Figure 4: Demonstrations of application possibilities for systems of μ-ILEDs in biomedicine.
Figure 5: Refractive-index microsensors based on thin, moulded plasmonic crystals integrated with arrays of μ-LEDs, in tape-like formats integrated directly on flexible tubing suitable for use in intravenous delivery systems.
Figure 6: Stretchable optical proximity sensor consisting of an array of μ-ILEDs and μ-IPDs mounted on the fingertip of a vinyl glove.

Similar content being viewed by others

References

  1. Reuss, R. H. et al. Macroelectronics: Perspectives on technology and applications. Proc. IEEE 93, 1239–1256 (2005).

    Article  CAS  Google Scholar 

  2. Forrest, S. R. The path to ubiquitous and low cost organic electronic appliances on plastic. Nature 428, 911–918 (2004).

    Article  CAS  Google Scholar 

  3. Menard, E. et al. Micro- and nanopatterning techniques for organic electronic and optoelectronic systems. Chem. Rev. 107, 1117–1160 (2007).

    Article  CAS  Google Scholar 

  4. Loo, Y-L. & McCulloch, I. Progress and challenges in commercialization of organic electronics. MRS Bull. 33, 653–662 (2008).

    Article  CAS  Google Scholar 

  5. So, F., Kido, J. & Burrows, P. Organic light-emitting devices for solid-state lighting. MRS Bull. 33, 663–669 (2008).

    Article  CAS  Google Scholar 

  6. Razavi, F. H. et al. Three dimensional nanopillar array photovoltaics on low cost and flexible substrates. Nature Mater. 8, 648–653 (2009).

    Article  Google Scholar 

  7. Ko, H. et al. Flexible carbon nanofiber connectors with anisotropic adhesion properties. Small 6, 22–26 (2010).

    Article  CAS  Google Scholar 

  8. Cohen-Karni, T., Timko, B. P., Weiss, L. E. & Lieber, C. M. Flexible electrical recording from cells using nanowire transistor arrays. Proc. Natl Acad. Sci. USA 106, 7309–7313 (2009).

    Article  CAS  Google Scholar 

  9. Timko, B. P. et al. Electrical recording from hearts with flexible nanowire device arrays. Nano Lett. 9, 914–918 (2009).

    Article  CAS  Google Scholar 

  10. Siegel, A. C., Philips, S. T., Wiley, B. J. & Whitesides, G. M. Thin, lightweight, foldable thermochromic displays on paper. Lab Chip 9, 2775–2781 (2009).

    Article  CAS  Google Scholar 

  11. Siegel, A. C. et al. Foldable printed circuit boards on paper substrates. Adv. Funct. Mater. 20, 28–35 (2010).

    Article  CAS  Google Scholar 

  12. Hu, L. et al. Highly conductive paper for energy-storage devices. Proc. Natl Acad. Sci. USA 106, 21490–21494 (2009).

    Article  CAS  Google Scholar 

  13. Hu, L. et al. Stretchable, porous, and conductive energy textiles. Nano Lett. 10, 708–714 (2010).

    Article  CAS  Google Scholar 

  14. Sekitani, T. et al. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nature Mater. 8, 494–499 (2009).

    Article  CAS  Google Scholar 

  15. Jacobs, H. O. & Whitesides, G. M. Submicrometer patterning of charge in thin-film electrets. Science 291, 1763–1766 (2001).

    Article  CAS  Google Scholar 

  16. Cole, J., Wang, X. & Jacobs, H. O. Patterned growth and transfer of ZnO micro- and nanocrystals with size and location control. Adv. Mater. 20, 1474–1478 (2008).

    Article  CAS  Google Scholar 

  17. Leong, T. G. et al. Tetherless thermobiochemical actuated microgrippers. Proc. Natl Acad. Sci. USA 106, 703–709 (2009).

    Article  CAS  Google Scholar 

  18. Park, S-I. et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science 325, 977–981 (2009).

    Article  CAS  Google Scholar 

  19. Dupuis, D. R. & Krames, M. R. History, development, and applications of high-brightness visible light-emitting diodes. IEEE J. Lightwave Technol. 26, 1154–1171 (2008).

    Article  CAS  Google Scholar 

  20. Kim, D-H. et al. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc. Natl Acad. Sci. USA 105, 18675–18680 (2008).

    Article  CAS  Google Scholar 

  21. Brown, X. Q., Ookawa, K. & Wong, J. Y. Evaluation of polydimethylsiloxane scaffolds with physiologically-relevant elastic moduli: Interplay of substrate mechanics and surface chemistry effects on vascular smooth muscle cell response. Biomaterials 26, 3123–3129 (2005).

    Article  CAS  Google Scholar 

  22. Kim, D-H. et al. Optimized structural designs for stretchable silicon integrated circuits. Small 5, 2841–2847 (2009).

    Article  CAS  Google Scholar 

  23. Kim, D-H. et al. Ultrathin silicon circuits with strain-isolation layers and mesh layouts for high-performance electronics on fabric, vinyl, leather, and paper. Adv. Mater. 21, 3703–3707 (2009).

    Article  CAS  Google Scholar 

  24. Jeon, B. S., Chun, S. Y. & Hong, C. J. Structural and mechanical properties of woven fabrics employing Peirce’s model. Tex. Res. J. 73, 929–933 (2003).

    Article  CAS  Google Scholar 

  25. Gardner, W. R. & Ehlig, C. F. Physical aspects of the irnternal water relations of plant leaves. Plant Physiol. 40, 705–710 (1965).

    Article  CAS  Google Scholar 

  26. Cox, H. L. The elasticity and strength of paper and other fibrous materials. Br. J. Appl. Phys. 3, 72–79 (1952).

    Article  Google Scholar 

  27. Hayase, M. et al. Photoangioplasty with local motexafin lutetium delivery reduces macrophages in a rabbit post-balloon injury model. Cardiovasc. Res. 49, 449–455 (2001).

    Article  CAS  Google Scholar 

  28. Waksman, R. et al. Photopoint photodynamic therapy promotes stabilization of atherosclerotic plaques and inhibits plaque progression. J. Am. Coll. Cardiol. 52, 1024–1032 (2008).

    Article  CAS  Google Scholar 

  29. Woodburn, K. W. et al. Phototherapy of cancer and atheromatous plaque with texaphyrins. J. Clin. Laser Med. Surg. 14, 343–348 (1996).

    Article  CAS  Google Scholar 

  30. Overholt, B. F., Panjehpour, M., Denovo, R. C. & Petersen, M. G. Photodynamic therapy for esophageal cancer using a 180° windowed esophageal balloon. Lasers Surg. Med. 14, 27–33 (2005).

    Article  Google Scholar 

  31. Sum, S., Madden, S., Hendricks, M., Chartier, S. & Muller, J. Near-infrared spectroscopy for the detection of lipid core coronary plaques. Curr. Cardiovasc. Imaging Rep. 2, 307–315 (2009).

    Article  Google Scholar 

  32. Waxman, S. et al. In vivo validation of a catheter-based near-infrared spectroscopy system for detection of lipid core coronary plaques: Initial results of the SPECTACL study. J. Am. Coll. Cardiol. Imging 2, 858–868 (2009).

    Article  Google Scholar 

  33. Waxman, S. Near-infrared spectroscopy for plaque characterization. J. Interv. Cardiol. 21, 452–458 (2008).

    Google Scholar 

  34. Corazza, A. V., Jorge, J., Kurachi, C. & Bagnato, V. S. Photobiomodulation on the angiogenesis of skin wounds in rats using different light sources. Photomed. Laser Surg. 25, 102–106 (2007).

    Article  Google Scholar 

  35. Wong-Riley, M. T. T. et al. Photobiomodulation directly benefits primary neurons functionally inactivated by toxins. J. Biol. Chem. 280, 4761–4771 (2005).

    Article  CAS  Google Scholar 

  36. Vinck, E. M., Cagnie, B. J., Cornelissen, M. J., Declercq, H. A. & Cambier, D. C. Increased fibroblast proliferation induced by light emitting diode and low power laser irradiation. Lasers Med. Sci. 18, 95–99 (2003).

    Article  Google Scholar 

  37. Schindl, A. et al. Direct stimulatory effect of low-intensity 670-nm laser irradiation on human endothelial cell proliferation. Br. J. Dermatol. 148, 334–336 (2003).

    Article  CAS  Google Scholar 

  38. Amir, A. et al. The influence of helium–neon irradiation on the viability of skin flaps in the rat. Br. J. Plast. Surg. 53, 58–62 (2000).

    Article  CAS  Google Scholar 

  39. Yao, J. et al. Functional nanostructured plasmonic materials. Adv. Mater. 22, 1102–1110 (2010).

    Article  CAS  Google Scholar 

  40. Yao, J. et al. Seeing molecules by eye: Surface plasmon resonance imaging at visible wavelengths with high spatial resolution and submonolayer sensitivity. Angew. Chem. 47, 5013–5017 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Banks for help with processing using facilities at the Frederick Seitz Materials Research Laboratory, J. D. Sulkin for help with luminance–current–voltage measurement, H-S. Kim for discussions and C. Conway and D. Stevenson for help with photography. We also thank Georgios A. Bertos, Ph.D., Sr R&D Principal Engineer Technology Resources Engineering, Baxter Healthcare Corporation, for discussions. This material is based on work supported by Ford Motor Company, the National Science Foundation under grant DMI-0328162 and the US Department of Energy, Division of Materials Sciences, under Award No. DE-FG02-07ER46471, through the Materials Research Laboratory and Center for Microanalysis of Materials (DE-FG02-07ER46453) at the University of Illinois at Urbana-Champaign. R-H.K. would like to thank Samsung Electronics for doctoral fellowships. J.A.R. acknowledges support from a National Security Science and Engineering Faculty Fellowship from the Department of Defense. Y.H. acknowledges support from NSF (OISE-1043143 and ECCS-0824129). F.G.O. and D.L.K. acknowledge support from the US Army Research Laboratory and the US Army Research Office under contract number W911 NF-07-1-0618 and by the DARPA-DSO and the NIH P41 Tissue Engineering Resource Center (P41 EB002520). We also thank the NIH P41 Tissue Engineering Resource Center (P41 EB002520) for support of the studies, all of which were conducted under approved animal protocols at Tufts University.

Author information

Authors and Affiliations

Authors

Contributions

R-H.K., D-H.K., B.H.K., S-I.P. and J.A.R. designed the experiments. R-H.K., D-H.K., B.H.K., J.X., B.P., J.Y., M.L., Z.J.L., A-P.L., D.G.K., F.G.O., Y.H., Z.K. and J.A.R. carried out experiments and analysis. R-H.K., D-H.K., J.X., R.G., J.Y., Y.H., F.G.O., D.L.K. and J.A.R. wrote the paper.

Corresponding author

Correspondence to John A. Rogers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3598 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, RH., Kim, DH., Xiao, J. et al. Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. Nature Mater 9, 929–937 (2010). https://doi.org/10.1038/nmat2879

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2879

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing