Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Unusual infrared-absorption mechanism in thermally reduced graphene oxide

Abstract

Infrared absorption of atomic and molecular vibrations in solids can be affected by electronic contributions through non-adiabatic interactions, such as the Fano effect. Typically, the infrared-absorption lineshapes are modified, or infrared-forbidden modes are detectable as a modulation of the electronic absorption. In contrast to such known phenomena, we report here the observation of a giant-infrared-absorption band in reduced graphene oxide, arising from the coupling of electronic states to the asymmetric stretch mode of a yet-unreported structure, consisting of oxygen atoms aggregated at the edges of defects. Free electrons are induced by the displacement of the oxygen atoms, leading to a strong infrared absorption that is in phase with the phonon mode. This new phenomenon is only possible when all other oxygen-containing chemical species, including hydroxyl, carboxyl, epoxide and ketonic functional groups, are removed from the region adjacent to the edges, that is, clean graphene patches are present.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Transmission infrared-absorbance spectrum of GO-1L.
Figure 2: Transmission infrared absorption spectra of thermally reduced GO-1L after annealing at 850 °C.
Figure 3: Simulated vibration modes of edge-oxidized graphene nanoribbon.
Figure 4: Total integrated absorbance versus annealing temperatures measured at 60 °C for GO-1L.
Figure 5: Electronic-structure change under asymmetric C–O–C stretch-mode vibration of edge-oxidized graphene nanoribbon.

References

  1. 1

    Kharissova, O. V. & Kharisov, B. I. Graphenes, one of the hottest areas in the nanotechnology: attention of chemists is needed. Open Inorg. Chem. J. 2, 39–49 (2008).

    CAS  Article  Google Scholar 

  2. 2

    Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  Article  Google Scholar 

  3. 3

    Wallace, P. R. The band theory of graphite. Phys. Rev. 71, 622–634 (1947).

    CAS  Google Scholar 

  4. 4

    Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    CAS  Article  Google Scholar 

  5. 5

    Berger, C. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006).

    CAS  Article  Google Scholar 

  6. 6

    Morozov, S. V. et al. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100, 016602–016606 (2008).

    CAS  Article  Google Scholar 

  7. 7

    Wu, J. et al. Organic solar cells with solution-processed graphene transparent electrodes. Appl. Phys. Lett. 92, 263302–263304 (2008).

    Article  Google Scholar 

  8. 8

    Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    CAS  Article  Google Scholar 

  9. 9

    Khveshchenko, D. V. Coulomb-interacting Dirac fermions in disordered graphene. Phys. Rev. B 74, 161402–161406 (2006).

    Article  Google Scholar 

  10. 10

    Morozov, S. V. Strong suppression of weak localization in graphene. Phys. Rev. Lett. 97, 016801–016804 (2006).

    CAS  Article  Google Scholar 

  11. 11

    Pisana, S. et al. Breakdown of the adiabatic Born–Oppenheimer approximation in graphene. Nature Mater. 6, 198–201 (2007).

    CAS  Article  Google Scholar 

  12. 12

    Cai, W. et al. Synthesis and solid-state NMR structural characterization of 13C-labelled graphite oxide. Science 321, 1815–1817 (2008).

    CAS  Article  Google Scholar 

  13. 13

    Park, S. et al. Graphene oxide papers modified by divalent ions enhancing mechanical properties via chemical crosslinking. ACS Nano 2, 572–578 (2008).

    CAS  Article  Google Scholar 

  14. 14

    Eda, G., Mattevi, C., Yamaguchi, H., Kim, H. & Chhowalla, M. Insulator to semimetal transition in graphene oxide. J. Phys. Chem. C 113, 15768–15771 (2009).

    CAS  Article  Google Scholar 

  15. 15

    Mattevi, C. et al. Evolution of electrical, chemical and structural properties of transparent and conducting chemically derived graphene thin films. Adv. Funct. Mater. 19, 2577–2583 (2009).

    CAS  Article  Google Scholar 

  16. 16

    Ferrari, A. C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007).

    CAS  Article  Google Scholar 

  17. 17

    Bruna, M. & Borini, S. Assessment of graphene quality by quantitative optical contrast analysis. J. Phys. D 42, 175307–175311 (2009).

    Article  Google Scholar 

  18. 18

    Garcia-Sanchez, D. et al. Imaging mechanical vibrations in suspended graphene sheets. Nano Lett. 8, 1399–1403 (2008).

    CAS  Article  Google Scholar 

  19. 19

    Lo, C. P., Quattrochi, D. A. & Luvall, J. C. Application of high-resolution thermal infrared remote sensing and GIS to assess the urban heat island effect. Int. J. Remote Sens. 18, 287–304 (1997).

    Article  Google Scholar 

  20. 20

    Dresselhaus, M. S. Nanotube antennas. Nature 432, 959–960 (2004).

    CAS  Article  Google Scholar 

  21. 21

    Parasido, J. A. & Starner, T. Energy scavenging for mobile and wireless electronics. IEEE Pervasive Comput. 4, 18–27 (2005).

    Google Scholar 

  22. 22

    Xia, F. et al. Ultrafast graphene photodetector. Nature Nanotech. 4, 839–843 (2009).

    CAS  Article  Google Scholar 

  23. 23

    Goki, E., Giovanni, F. & Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotech. 3, 270–274 (2008).

    Article  Google Scholar 

  24. 24

    Lide, D. R. CRC Handbook of Chemistry and Physics 84th edn (CRC Press LLC, 2003).

    Google Scholar 

  25. 25

    Hartwig, C. M. & Rahn, L. A. Bound hydroxyl in vitreous silica. J. Chem. Phys. 67, 4260–4261 (1977).

    CAS  Article  Google Scholar 

  26. 26

    Fukui, K., Miyauchi, H. & Iwasawa, Y. Highly sensitive detection of adsorbed species on a SiO2 surface by reflection absorption infrared spectroscopy. Chem. Phys. Lett. 274, 133–139 (1997).

    CAS  Article  Google Scholar 

  27. 27

    Stankovich, S. et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007).

    CAS  Article  Google Scholar 

  28. 28

    Chabal, Y. J. Surface infrared spectroscopy. Surf. Sci. Rep. 8, 211–357 (1988).

    CAS  Article  Google Scholar 

  29. 29

    Chabal, Y. J. Electronic damping of hydrogen vibration on the W(100) surface. Phys. Rev. Lett. 55, 845–848 (1985).

    CAS  Article  Google Scholar 

  30. 30

    Zhang, Z. Y. & Langreth, D. C. Electronic damping of adsorbate fundamental and overtone vibrations at metal surfaces. Phys. Rev. B 39, 10028–10046 (1989).

    CAS  Article  Google Scholar 

  31. 31

    Tang, T. et al. A tunable phonon–exciton Fano system in bilayer graphene. Nature Nanotech. 5, 32–36 (2010).

    CAS  Article  Google Scholar 

  32. 32

    Gao, W., Alemany, L. B., Ci, L. & Ajayan, P. M. New insights into the structure and reduction of graphite oxide. Nature Chem. 1, 403–408 (2009).

    CAS  Article  Google Scholar 

  33. 33

    Kosynkin, D. V. et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009).

    CAS  Article  Google Scholar 

  34. 34

    Hirata, M., Gotou, T., Horiuchi, S., Fujiwara, M. & Ohba, M. Thin-film particles of graphite oxide: High-yield synthesis and flexibility of the particles. Carbon 42, 2929–2937 (2004).

    CAS  Google Scholar 

  35. 35

    Mkhoyan, K. A. et al. Atomic and electronic structure of graphene oxide. Nano Lett. 9, 1058–1063 (2009).

    CAS  Article  Google Scholar 

  36. 36

    Gilje, S., Han, S., Wang, M., Wang, K. L. & Kaner, R. B. A chemical route to graphene for device applications. Nano Lett. 7, 3394–3398 (2007).

    CAS  Article  Google Scholar 

  37. 37

    Kresse, G. & Fürthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Article  Google Scholar 

  38. 38

    Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    CAS  Article  Google Scholar 

  39. 39

    Ceperley, D. M. & Alder, B. J. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566–569 (1980).

    CAS  Article  Google Scholar 

  40. 40

    Bader, R. Atoms in Molecules: A Quantum Theory (Oxford Univ. Press, 1990).

    Google Scholar 

  41. 41

    Huber, K. P. & Herzberg, G. Molecular Spectra and Molecular Structure, Constants of Diatomic Molecules Vol. 4 (Van Nostrand Reinhold, 1979).

    Book  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the SWAN-NRI program and Texas Instruments (TI), the technical expertise of J-F. Veyan and in-depth discussions with L. Colombo (TI) and with R. M. Wallace, E. Vogel, J. Kim, M. Kim, J-F. Veyan and W. Kirk at UT Dallas.

Author information

Affiliations

Authors

Contributions

M.A. carried out all infrared-spectroscopy work, including thermal-annealing experiments in parallel to chemical reduction. G.L. carried out all density functional theory and molecular dynamics simulations using theoretical methods. Y.J.C. and K.C. directed and supervised the experimental and theoretical research, respectively. M.A., G.L., K.C. and Y.J.C. contributed equally to the manuscript. C.M. prepared the single-layer and three-layer graphene oxide samples under M.C.’s supervision.

Corresponding author

Correspondence to Y. J. Chabal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1092 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Acik, M., Lee, G., Mattevi, C. et al. Unusual infrared-absorption mechanism in thermally reduced graphene oxide. Nature Mater 9, 840–845 (2010). https://doi.org/10.1038/nmat2858

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing