Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fast domain wall motion in magnetic comb structures


Modern fabrication technology has enabled the study of submicron ferromagnetic strips with a particularly simple domain structure, allowing single, well-defined domain walls to be isolated and characterized. However, these domain walls have complex field-driven dynamics. The wall velocity initially increases with field, but above a certain threshold the domain wall abruptly slows down, accompanied by periodic transformations of the domain wall structure. This behaviour is potentially detrimental to the speed and proper functioning of proposed domain-wall-based devices1,2,3, and although methods for suppression of the breakdown have been demonstrated in simulations4,5, a convincing experimental demonstration is lacking. Here, we show experimentally that a series of cross-shaped traps acts to prevent transformations of the domain wall structure and increase the domain wall velocity by a factor of four compared to the maximum velocity on a plain strip. Our results suggest a route to faster and more reliable domain wall devices for memory, logic and sensing.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematics and SEM images of nanostructures.
Figure 2: Field sequence for velocity measurements.
Figure 3: Domain wall velocity as a function of field.
Figure 4: Micromagnetic simulations.

Similar content being viewed by others


  1. Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).

    Article  CAS  Google Scholar 

  2. Allwood, D. A. et al. Magnetic domain-wall logic. Science 309, 1688–1692 (2005).

    Article  CAS  Google Scholar 

  3. Diegel, M., Glathe, S., Mattheis, R., Scherzinger, M. & Halder, E. A new four bit magnetic domain wall based multiturn counter. IEEE Trans. Magn. 45, 3792–3795 (2009).

    Article  Google Scholar 

  4. Nakatani, Y., Thiaville, A. & Miltat, J. Faster magnetic walls in rough wires. Nature Mater. 2, 521–523 (2003).

    Article  CAS  Google Scholar 

  5. Lee, J. Y., Lee, K. S. & Kim, S. K. Remarkable enhancement of domain-wall velocity in magnetic nanostripes. Appl. Phys. Lett. 91, 122513 (2007).

    Article  Google Scholar 

  6. Schryer, N. L. & Walker, L. R. The motion of 180° domain walls in uniform dc magnetic fields. J. Appl. Phys. 45, 5406–5421 (1974).

    Article  CAS  Google Scholar 

  7. Thiaville, A. & Nakatani, Y. Spin Dynamics in Confined Magnetic Structures III (Springer, 2006).

    Google Scholar 

  8. Nakatani, Y., Thiaville, A. & Miltat, J. Head-to-head domain walls in soft nano-strips: A refined phase diagram. J. Magn. Magn. Mater. 290, 750–753 (2005).

    Article  Google Scholar 

  9. McMichael, R. D. & Donahue, M. J. Head to head domain wall structures in thin magnetic strips. IEEE Trans. Magn. 33, 4167–4169 (1997).

    Article  Google Scholar 

  10. Hayashi, M. et al. Dependence of current and field driven depinning of domain walls on their structure and chirality in permalloy nanowires. Phys. Rev. Lett. 97, 207205 (2006).

    Article  Google Scholar 

  11. Petit, D., Jausovec, A. V., Read, D. & Cowburn, R. P. Domain wall pinning and potential landscapes created by constrictions and protrusions in ferromagnetic nanowires. J. Appl. Phys. 103, 114307 (2008).

    Article  Google Scholar 

  12. Bryan, M. T., Schrefl, T., Atkinson, D. & Allwood, D. A. Magnetic domain wall propagation in nanowires under transverse magnetic fields. J. Appl. Phys. 103, 073906 (2008).

    Article  Google Scholar 

  13. Beach, G. S. D., Nistor, C., Knutson, C., Tsoi, M. & Erskine, J. L. Dynamics of field-driven domain-wall propagation in ferromagnetic nanowires. Nature Mater. 4, 741–744 (2005).

    Article  CAS  Google Scholar 

  14. Hayashi, M., Thomas, L., Rettner, C., Moriya, R. & Parkin, S. S. P. Direct observation of the coherent precession of magnetic domain walls propagating along permalloy nanowires. Nature Phys. 3, 21–25 (2007).

    Article  CAS  Google Scholar 

  15. Weerts, K., Van Roy, W., Borghs, G. & Lagae, L. Suppression of complex domain wall behaviour in Ni80Fe20 nanowires by oscillating magnetic fields. Appl. Phys. Lett. 96, 062502 (2010).

    Article  Google Scholar 

  16. Glathe, S., Berkov, I., Mikolajick, T. & Mattheis, R. Experimental study of domain wall motion in long nanostrips under the influence of a transverse field. Appl. Phys. Lett. 93, 162505 (2008).

    Article  Google Scholar 

  17. Lewis, E. R. et al. Measuring domain wall fidelity lengths using a chirality filter. Phys. Rev. Lett. 102, 057209 (2009).

    Article  CAS  Google Scholar 

  18. Petit, D. et al. Mechanism for domain wall pinning and potential landscape modification by artificially patterned traps in ferromagnetic nanowires. Phys. Rev. B 79, 214405 (2009).

    Article  Google Scholar 

  19. Martinez, E., Lopez-Diaz, L., Alejos, O., Torres, L. & Carpentieri, M. Domain-wall dynamics driven by short pulses along thin ferromagnetic strips: Micromagnetic simulations and analytical description. Phys. Rev. B 79, 094430 (2009).

    Article  Google Scholar 

  20. Lee, J. Y., Lee, K. S., Choi, S., Guslienko, K. Y. & Kim, S. K. Dynamic transformations of the internal structure of a moving domain wall in magnetic nanostripes. Phys. Rev. B 76, 184408 (2007).

    Article  Google Scholar 

  21. Hayashi, M. et al. Influence of current on field-driven domain wall motion in permalloy nanowires from time resolved measurements of anisotropic magnetoresistance. Phys. Rev. Lett. 96, 197207 (2006).

    Article  CAS  Google Scholar 

  22. Atkinson, D. et al. Magnetic domain-wall dynamics in a submicrometre ferromagnetic structure. Nature Mater. 2, 85–87 (2003).

    Article  CAS  Google Scholar 

  23. Kunz, A. & Reiff, S. C. Fast domain wall motion in nanostripes with out-of-plane fields. Appl. Phys. Lett. 93, 082503 (2008).

    Article  Google Scholar 

  24. Sobolev, V. L., Huang, H. L. & Chen, S. C. Generalized equations for Domain-Wall dynamics. J. Appl. Phys. 75, 5797–5799 (1994).

    Article  Google Scholar 

  25. Sobolev, V. L., Huang, H. L. & Chen, S. C. Domain-Wall dynamics in the presence of an external magnetic-field normal to the anisotropy axis. J. Magn. Magn. Mater. 147, 284–298 (1995).

    Article  CAS  Google Scholar 

  26. The OOMMF code is available at

Download references


This work was supported by the European Community under the Sixth Framework Programme SPINSWITCH MRTN-CT-2006-035327.

Author information

Authors and Affiliations



E.R.L. fabricated the sample, carried out the measurements and wrote the manuscript. All authors contributed to the experimental protocol and data analysis and edited the manuscript.

Corresponding author

Correspondence to E. R. Lewis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 442 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lewis, E., Petit, D., O’Brien, L. et al. Fast domain wall motion in magnetic comb structures. Nature Mater 9, 980–983 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing