Abstract
Modern fabrication technology has enabled the study of submicron ferromagnetic strips with a particularly simple domain structure, allowing single, well-defined domain walls to be isolated and characterized. However, these domain walls have complex field-driven dynamics. The wall velocity initially increases with field, but above a certain threshold the domain wall abruptly slows down, accompanied by periodic transformations of the domain wall structure. This behaviour is potentially detrimental to the speed and proper functioning of proposed domain-wall-based devices1,2,3, and although methods for suppression of the breakdown have been demonstrated in simulations4,5, a convincing experimental demonstration is lacking. Here, we show experimentally that a series of cross-shaped traps acts to prevent transformations of the domain wall structure and increase the domain wall velocity by a factor of four compared to the maximum velocity on a plain strip. Our results suggest a route to faster and more reliable domain wall devices for memory, logic and sensing.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).
Allwood, D. A. et al. Magnetic domain-wall logic. Science 309, 1688–1692 (2005).
Diegel, M., Glathe, S., Mattheis, R., Scherzinger, M. & Halder, E. A new four bit magnetic domain wall based multiturn counter. IEEE Trans. Magn. 45, 3792–3795 (2009).
Nakatani, Y., Thiaville, A. & Miltat, J. Faster magnetic walls in rough wires. Nature Mater. 2, 521–523 (2003).
Lee, J. Y., Lee, K. S. & Kim, S. K. Remarkable enhancement of domain-wall velocity in magnetic nanostripes. Appl. Phys. Lett. 91, 122513 (2007).
Schryer, N. L. & Walker, L. R. The motion of 180° domain walls in uniform dc magnetic fields. J. Appl. Phys. 45, 5406–5421 (1974).
Thiaville, A. & Nakatani, Y. Spin Dynamics in Confined Magnetic Structures III (Springer, 2006).
Nakatani, Y., Thiaville, A. & Miltat, J. Head-to-head domain walls in soft nano-strips: A refined phase diagram. J. Magn. Magn. Mater. 290, 750–753 (2005).
McMichael, R. D. & Donahue, M. J. Head to head domain wall structures in thin magnetic strips. IEEE Trans. Magn. 33, 4167–4169 (1997).
Hayashi, M. et al. Dependence of current and field driven depinning of domain walls on their structure and chirality in permalloy nanowires. Phys. Rev. Lett. 97, 207205 (2006).
Petit, D., Jausovec, A. V., Read, D. & Cowburn, R. P. Domain wall pinning and potential landscapes created by constrictions and protrusions in ferromagnetic nanowires. J. Appl. Phys. 103, 114307 (2008).
Bryan, M. T., Schrefl, T., Atkinson, D. & Allwood, D. A. Magnetic domain wall propagation in nanowires under transverse magnetic fields. J. Appl. Phys. 103, 073906 (2008).
Beach, G. S. D., Nistor, C., Knutson, C., Tsoi, M. & Erskine, J. L. Dynamics of field-driven domain-wall propagation in ferromagnetic nanowires. Nature Mater. 4, 741–744 (2005).
Hayashi, M., Thomas, L., Rettner, C., Moriya, R. & Parkin, S. S. P. Direct observation of the coherent precession of magnetic domain walls propagating along permalloy nanowires. Nature Phys. 3, 21–25 (2007).
Weerts, K., Van Roy, W., Borghs, G. & Lagae, L. Suppression of complex domain wall behaviour in Ni80Fe20 nanowires by oscillating magnetic fields. Appl. Phys. Lett. 96, 062502 (2010).
Glathe, S., Berkov, I., Mikolajick, T. & Mattheis, R. Experimental study of domain wall motion in long nanostrips under the influence of a transverse field. Appl. Phys. Lett. 93, 162505 (2008).
Lewis, E. R. et al. Measuring domain wall fidelity lengths using a chirality filter. Phys. Rev. Lett. 102, 057209 (2009).
Petit, D. et al. Mechanism for domain wall pinning and potential landscape modification by artificially patterned traps in ferromagnetic nanowires. Phys. Rev. B 79, 214405 (2009).
Martinez, E., Lopez-Diaz, L., Alejos, O., Torres, L. & Carpentieri, M. Domain-wall dynamics driven by short pulses along thin ferromagnetic strips: Micromagnetic simulations and analytical description. Phys. Rev. B 79, 094430 (2009).
Lee, J. Y., Lee, K. S., Choi, S., Guslienko, K. Y. & Kim, S. K. Dynamic transformations of the internal structure of a moving domain wall in magnetic nanostripes. Phys. Rev. B 76, 184408 (2007).
Hayashi, M. et al. Influence of current on field-driven domain wall motion in permalloy nanowires from time resolved measurements of anisotropic magnetoresistance. Phys. Rev. Lett. 96, 197207 (2006).
Atkinson, D. et al. Magnetic domain-wall dynamics in a submicrometre ferromagnetic structure. Nature Mater. 2, 85–87 (2003).
Kunz, A. & Reiff, S. C. Fast domain wall motion in nanostripes with out-of-plane fields. Appl. Phys. Lett. 93, 082503 (2008).
Sobolev, V. L., Huang, H. L. & Chen, S. C. Generalized equations for Domain-Wall dynamics. J. Appl. Phys. 75, 5797–5799 (1994).
Sobolev, V. L., Huang, H. L. & Chen, S. C. Domain-Wall dynamics in the presence of an external magnetic-field normal to the anisotropy axis. J. Magn. Magn. Mater. 147, 284–298 (1995).
The OOMMF code is available at http://math.nist.gov/oommf.
Acknowledgements
This work was supported by the European Community under the Sixth Framework Programme SPINSWITCH MRTN-CT-2006-035327.
Author information
Authors and Affiliations
Contributions
E.R.L. fabricated the sample, carried out the measurements and wrote the manuscript. All authors contributed to the experimental protocol and data analysis and edited the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 442 kb)
Rights and permissions
About this article
Cite this article
Lewis, E., Petit, D., O’Brien, L. et al. Fast domain wall motion in magnetic comb structures. Nature Mater 9, 980–983 (2010). https://doi.org/10.1038/nmat2857
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat2857
This article is cited by
-
Creation of transverse domain walls in permalloy nanowires using Lorentz transmission electron microscopy: progress, opportunities, and challenges
Journal of the Korean Physical Society (2023)
-
Spintronic devices: a promising alternative to CMOS devices
Journal of Computational Electronics (2021)
-
Suppression of Stochastic Domain Wall Pinning Through Control of Gilbert Damping
Scientific Reports (2017)
-
Coupled Néel domain wall motion in sandwiched perpendicular magnetic anisotropy nanowires
Scientific Reports (2015)
-
Controlling domain wall motion in ferroelectric thin films
Nature Nanotechnology (2015)