Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Controlled selectivity for palladium catalysts using self-assembled monolayers

Abstract

The selective reaction of one part of a bifunctional molecule is a fundamental challenge in heterogeneous catalysis and for many processes including the conversion of biomass-derived intermediates. Selective hydrogenation of unsaturated epoxides to saturated epoxides is particularly difficult given the reactivity of the strained epoxide ring, and traditional platinum group catalysts show low selectivities. We describe the preparation of highly selective Pd catalysts involving the deposition of n-alkanethiol self-assembled monolayer (SAM) coatings. These coatings improve the selectivity of 1-epoxybutane formation from 1-epoxy-3-butene on palladium catalysts from 11 to 94% at equivalent reaction conditions and conversions. Although sulphur species are generally considered to be indiscriminate catalyst poisons, the reaction rate to the desired product on a catalyst coated with a thiol was 40% of the rate on an uncoated catalyst. Interestingly the activity decreased for less-ordered SAMs with shorter chains. The behaviour of SAM-coated catalysts was compared with catalysts where surface sites were modified by carbon monoxide, hydrocarbons or sulphur atoms. The results suggest that the SAMs restrict sulphur coverage to enhance selectivity without significantly poisoning the activity of the desired reaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: The structure of a propanethiol SAM on Pd(111).
Figure 3: Epoxybutane selectivity and formation rate for different thiol coatings at 313 K.
Figure 4: DRIFT spectra of SAM-coated catalysts.
Figure 5: Epoxybutane selectivity and formation rate versus 1,000 ppm H2S exposure at 313 K.

Similar content being viewed by others

References

  1. Bond, G. C. Metal Catalysed Reactions of Hydrocarbons (Springer, 2005).

    Google Scholar 

  2. Rod, T. H. & Norskov, J. K. The surface science of enzymes. Surf. Sci. 500, 678–698 (2002).

    Article  CAS  Google Scholar 

  3. Collman, J. P., Wang, Z., Straumanis, A., Quelquejeu, M. & Rose, E. An efficient catalyst for asymmetric epoxidation of terminal olefins. J. Am. Chem. Soc. 121, 460–461 (1999).

    Article  CAS  Google Scholar 

  4. Robertson, A. & Shinkai, S. Cooperative binding in selective sensors: Catalysts and actuators. Coord. Chem. Rev. 205, 157–199 (2000).

    Article  CAS  Google Scholar 

  5. Baiker, A. Progress in asymmetric heterogeneous catalysis: Design of novel chirally modified platinum metal catalysts. J. Mol. Catal. A 115, 473–493 (1997).

    Article  CAS  Google Scholar 

  6. Roman-Leshkov, Y., Chheda, J. N. & Dumesic, J. A. Phase modifiers promote efficient production of hydroxymethylfurfural from fructose. Science 312, 1933–1937 (2006).

    Article  CAS  Google Scholar 

  7. Kunkes, E. L. et al. Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes. Science 322, 417–421 (2008).

    Article  CAS  Google Scholar 

  8. Monnier, J. R. & Muehlbauer, P. J. Selective monoepoxidation of olefins. US patent 4,897,498 (1988).

  9. Schaal, M. T., Pickerel, A. C., Williams, C. T. & Monnier, J. R. Characterization and evaluation of Ag–Pt/SiO2 catalysts prepared by electroless deposition. J. Catal. 254, 131–143 (2008).

    Article  CAS  Google Scholar 

  10. Cho, I. S., Lee, B. & Alper, H. Chemoselective hydrogenation of the double-bond of vinyl epoxides with homogeneous palladium and iridium catalysts. Tetrahedron Lett. 36, 6009–6012 (1995).

    Article  CAS  Google Scholar 

  11. Marshall, S. T., Horiuchi, C. M., Zhang, W. Y. & Medlin, J. W. Common decomposition pathways of 1-epoxy-3-butene and 2-butenal on Pd(111). J. Phys. Chem. C 112, 20406–20412 (2008).

    Article  CAS  Google Scholar 

  12. Medlin, J. W., Barteau, M. A. & Vohs, J. M. Oxametallacycle formation via ring-opening of 1-epoxy-3-butene on Ag(110): A combined experimental/theoretical approach. J. Mol. Catal. A 163, 129–145 (2000).

    Article  CAS  Google Scholar 

  13. Bartok, M., Fasi, A. & Notheisz, F. Transformation of vinyloxirane on Pt–SiO2 and Pd–SiO2 . J. Catal. 175, 40–47 (1998).

    Article  CAS  Google Scholar 

  14. Love, J. C. et al. Formation and structure of self-assembled monolayers of alkanethiolates on palladium. J. Am. Chem. Soc. 125, 2597–2609 (2003).

    Article  CAS  Google Scholar 

  15. Laibinis, P. E. et al. Comparison of the structures and wetting properties of self-assembled monolayers of normal-alkanethiols on the coinage metal-surfaces, Cu, Ag, Au. J. Am. Chem. Soc. 113, 7152–7167 (1991).

    Article  CAS  Google Scholar 

  16. Hostetler, M. J., Stokes, J. J. & Murray, R. W. Infrared spectroscopy of three-dimensional self-assembled monolayers: N-alkanethiolate monolayers on gold cluster compounds. Langmuir 12, 3604–3612 (1996).

    Article  CAS  Google Scholar 

  17. Porter, M. D., Bright, T. B., Allara, D. L. & Chidsey, C. E. D. Spontaneously organized molecular assemblies. 4. Structural characterization of normal-alkyl thiol monolayers on gold by optical ellipsometry, infrared-spectroscopy, and electrochemistry. J. Am. Chem. Soc. 109, 3559–3568 (1987).

    Article  CAS  Google Scholar 

  18. Schwartz, D. K. Mechanisms and kinetics of self-assembled monolayer formation. Annu. Rev. Phys. Chem. 52, 107–137 (2001).

    Article  CAS  Google Scholar 

  19. Thomson, S. J. & Webb, G. Catalytic-hydrogenation of olefins on metals—new interpretation. J. Chem. Soc.-Chem. Commun. 526–527 (1976).

  20. Tang, D. C., Hwang, K. S., Salmeron, M. & Somorjai, G. A. High pressure scanning tunnelling microscopy study of CO poisoning of ethylene hydrogenation on Pt(111) and Rh(111) single crystals. J. Phys. Chem. B 108, 13300–13306 (2004).

    Article  CAS  Google Scholar 

  21. Bond, G. C. The use of kinetics in evaluating mechanisms in heterogeneous catalysis. Catal. Rev.-Sci. Eng. 50, 532–567 (2008).

    Article  CAS  Google Scholar 

  22. Chen, M. S., Kumar, D., Yi, C. W. & Goodman, D. W. The promotional effect of gold in catalysis by palladium-gold. Science 310, 291–293 (2005).

    Article  CAS  Google Scholar 

  23. Rose, M. K. et al. Ordered structures of CO on Pd(111) studied by STM. Surf. Sci. 512, 48–60 (2002).

    Article  CAS  Google Scholar 

  24. Kondoh, H., Kodama, C., Sumida, H. & Nozoye, H. Molecular processes of adsorption and desorption of alkanethiol monolayers on Au(111). J. Chem. Phys. 111, 1175–1184 (1999).

    CAS  Google Scholar 

  25. Grunes, J., Zhu, J., Yang, M. C. & Somorjai, G. A. CO poisoning of ethylene hydrogenation over Pt catalysts: A comparison of Pt(111) single crystal and Pt nanoparticle activities. Catal. Lett. 86, 157–161 (2003).

    Article  CAS  Google Scholar 

  26. Miller, J. B. & Gellman, A. J. Structural evolution of sulfur overlayers on Pd(111). Surf. Sci. 603, L82–L85 (2009).

    Article  CAS  Google Scholar 

  27. Nascente, P. A. P., Vanhove, M. A. & Somorjai, G. A. Induced ordering of ethylidyne on the Pd(111) surface by the preadsorption of oxygen—a LEED and HREELS study. Surf. Sci. 253, 167–176 (1991).

    Article  CAS  Google Scholar 

  28. Sellers, H., Ulman, A., Shnidman, Y. & Eilers, J. E. Structure and binding of alkanethiolates on gold and silver surfaces—implications for self-assembled monolayers. J. Am. Chem. Soc. 115, 9389–9401 (1993).

    Article  CAS  Google Scholar 

  29. Nomikou, Z., VanHove, M. A. & Somorjai, G. A. Molecular modeling of ethylidyne adsorption and diffusion on Pt(111). Langmuir 12, 1251–1256 (1996).

    Article  CAS  Google Scholar 

  30. Ilharco, L. M., Garcia, A. R. & daSilva, J. L. The chemical adsorption of 1-hexene on Ru(0001) studied by reflection–absorption infrared spectroscopy. Surf. Sci. 371, 289–296 (1997).

    Article  CAS  Google Scholar 

  31. Wood, J., Alldrick, M. J., Winterbottom, J. M., Stitt, E. H. & Bailey, S. Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) study of ethyne hydrogenation on Pd/Al2O3. Catal. Today 128, 52–62 (2007).

    Article  CAS  Google Scholar 

  32. Garcia, A. R., Barros, R. B. & Ilharco, L. M. Activation of double and triple bond in C-6 unsaturated hydrocarbons by the Ru(001) surface: An overview. J. Phys. Organ. Chem. 21, 703–712 (2008).

    Article  CAS  Google Scholar 

  33. Somorjai, G. A. Mechanisms of sulfur poisoning of platinum catalysts. J. Catal. 27, 453–456 (1972).

    Article  CAS  Google Scholar 

  34. Calaza, F., Stacchiola, D., Neurock, M. & Tysoe, W. T. Coverage effects on the palladium-catalyzed synthesis of vinyl acetate: Comparison between theory and experiment. J. Am. Chem. Soc. 132, 2202–2207 (2010).

    Article  CAS  Google Scholar 

  35. Kitchin, J. R. Correlations in coverage-dependent atomic adsorption energies on Pd(111). Phys. Rev. B 79, 205412 (2009).

    Article  Google Scholar 

  36. Burkholder, L., Stacchiola, D. & Tysoe, W. T. Kinetic and reactive properties of ethylene on clean and hydrogen-covered Pd(111). Surf. Rev. Lett. 10, 909–916 (2003).

    Article  CAS  Google Scholar 

  37. Stacchiola, D., Burkholder, L. & Tysoe, W. T. Structure and reactivity of propylene on clean and hydrogen-covered Pd(111). Surf. Sci. 542, 129–141 (2003).

    Article  CAS  Google Scholar 

  38. Norskov, J. K. & Abild-Pedersen, F. Bond control in surface reactions. Nature 461, 1223–1225 (2009).

    Article  CAS  Google Scholar 

  39. Dubois, L. H., Zegarski, B. R. & Nuzzo, R. G. Molecular ordering of organosulfur compounds on Au(111) and Au(100)—adsorption from solution and in ultrahigh-vacuum. J. Chem. Phys. 98, 678–688 (1993).

    Article  CAS  Google Scholar 

  40. Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G. & Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1169 (2005).

    Article  CAS  Google Scholar 

  41. Makkonen, I., Salo, P., Alatalo, M. & Rahman, T. S. Characteristics of S adsorption on Pd vicinal surfaces. Surf. Sci. 532–535, 154–159 (2003).

    Article  Google Scholar 

  42. Maki-Arvela, P., Hajek, J., Salmi, T. & Murzin, D. Y. Chemoselective hydrogenation of carbonyl compounds over heterogeneous catalysts. Appl. Catal. A-Gen. 292, 1–49 (2005).

    Article  Google Scholar 

  43. Speller, S., Rauch, T., Bomermann, J., Borrmann, P. & Heiland, W. Surface structures of S on Pd(111). Surf. Sci. 441, 107–116 (1999).

    Article  CAS  Google Scholar 

  44. Li, F. S., Zhou, W. C. & Guo, Q. M. Uncovering the hidden gold atoms in a self-assembled monolayer of alkanethiol molecules on Au(111). Phys. Rev. B 79, 113412 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Renewable and Sustainable Energy Institute, a joint institute of the University of Colorado and the National Renewable Energy Laboratory. S.T.M. thanks the Department of Education Graduate Assistantships in Areas of National Need and Peter and Vivian Teets for additional funding.

Author information

Authors and Affiliations

Authors

Contributions

S.T.M., M.O. and B.O. carried out the catalysis and surface science experiments; A.C. carried out DRIFT spectroscopy experiments; S.T.M., D.K.S. and J.W.M. wrote the manuscript; and R.M.R., D.K.S. and J.W.M. supervised the project.

Corresponding author

Correspondence to J. William Medlin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 202 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marshall, S., O’Brien, M., Oetter, B. et al. Controlled selectivity for palladium catalysts using self-assembled monolayers. Nature Mater 9, 853–858 (2010). https://doi.org/10.1038/nmat2849

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2849

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing