Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High proton conduction in grain-boundary-free yttrium-doped barium zirconate films grown by pulsed laser deposition

Abstract

Reducing the operating temperature in the 500–750 °C range is needed for widespread use of solid oxide fuel cells (SOFCs). Proton-conducting oxides are gaining wide interest as electrolyte materials for this aim. We report the fabrication of BaZr0.8Y0.2O3−δ (BZY) proton-conducting electrolyte thin films by pulsed laser deposition on different single-crystalline substrates. Highly textured, epitaxially oriented BZY films were obtained on (100)-oriented MgO substrates, showing the largest proton conductivity ever reported for BZY samples, being 0.11 S cm−1 at 500 °C. The excellent crystalline quality of BZY films allowed for the first time the experimental measurement of the large BZY bulk conductivity above 300 °C, expected in the absence of blocking grain boundaries. The measured proton conductivity is also significantly larger than the conductivity values of oxygen-ion conductors in the same temperature range, opening new potential for the development of miniaturized SOFCs for portable power supply.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: XRD analysis of BZY films.
Figure 2: Morphology influence on conductivity.
Figure 3: EIS analysis of BZY films.
Figure 4: Arrhenius plots of BZY film conductivity in different atmospheres.
Figure 5: Electrical conductivity comparisons.

Similar content being viewed by others

References

  1. Boudghene Stambouli, A. & Traversa, E. Solid oxide fuel cells (SOFCs): A review of an environmentally clean and efficient source of energy. Renew. Sustain. Energy Rev. 6, 433–455 (2002).

    Article  Google Scholar 

  2. Brett, D. J. L., Atkinson, A., Brandon, N. P. & Skinner, S. J. Intermediate temperature solid oxide fuel cells. Chem. Soc. Rev. 37, 1568–1578 (2008).

    Article  CAS  Google Scholar 

  3. Kendall, K. & Palin, M. A small solid oxide fuel cell demonstrator for microelectronic application. J. Power Sources 71, 268–270 (1998).

    Article  CAS  Google Scholar 

  4. Perednis, D. & Gauckler, L. J. Solid oxide fuel cells with electrolytes prepared via spray pyrolysis. Solid State Ion. 166, 229–239 (2004).

    Article  CAS  Google Scholar 

  5. De Souza, S., Visco, S. J. & De Jonghe, L. C. Thin-film solid oxide fuel cell with high performance at low temperature. Solid State Ion. 98, 57–61 (1997).

    Article  CAS  Google Scholar 

  6. Beckel, D. J. et al. Thin films for micro solid oxide fuel cells. J. Power Sources 173, 325–345 (2007).

    Article  CAS  Google Scholar 

  7. Steele, B. C. H. & Heinzel, A. Materials for fuel-cell technologies. Nature 414, 345–352 (2001).

    Article  CAS  Google Scholar 

  8. Kreuer, K. D. Proton-conducting oxides. Annu. Rev. Mater. Res. 33, 333–359 (2003).

    Article  CAS  Google Scholar 

  9. Bonanos, N. Transport properties and conduction mechanism in high-temperature protonic conductors. Solid State Ion. 53–56, 967–974 (1992).

    Article  Google Scholar 

  10. Iwahara, H., Asakura, Y., Katahira, K. & Tanaka, M. Prospect of hydrogen technology using proton-conducting ceramics. Solid State Ion. 168, 299–310 (2004).

    Article  CAS  Google Scholar 

  11. Ma, G., Shimura, T. & Iwahara, H. Ionic conduction and nonstoichiometry in BaxCe0.9Y0.1O3−α . Solid State Ion. 110, 103–110 (1998).

    Article  CAS  Google Scholar 

  12. Zakowsky, N., Williamson, S. & Irvine, J. T. S. Elaboration of CO2 tolerance limits of BaCe0.9Y0.1O3–δ electrolytes for fuel cells and other applications. Solid State Ion. 176, 3019–3026 (2005).

    Article  CAS  Google Scholar 

  13. Bhide, S. V. & Virkar, A. V. J. Stability of BaCeO3-based proton conductors in water-containing atmospheres. J. Electrochem. Soc. 146, 2038–2044 (1999).

    Article  CAS  Google Scholar 

  14. Fabbri, E., D’Epifanio, A., Di Bartolomeo, E., Licoccia, S. & Traversa, E. Tailoring the chemical stability of Ba(Ce0.8−xZrx)Y0.2O3−δ protonic conductors for intermediate temperature solid oxide fuel cells (IT-SOFCs). Solid State Ion. 179, 558–564 (2008).

    Article  CAS  Google Scholar 

  15. Katahira, K., Kohchi, Y., Shimura, T. & Iwahara, H. Protonic conduction in Zr-substituted BaCeO3 . Solid State Ion. 138, 91–98 (2000).

    Article  CAS  Google Scholar 

  16. Babilo, P. & Haile, S. M. Enhanced sintering of yttrium-doped barium zirconate by addition of ZnO. J. Am. Ceram. Soc. 88, 2362–2368 (2005).

    Article  CAS  Google Scholar 

  17. Bohn, H. G. & Schober, T. J. Electrical conductivity of the high-temperature proton conductor BaZr0.9Y0.1O2.95 . J. Am. Ceram. Soc. 83, 768–772 (2000).

    Article  CAS  Google Scholar 

  18. Kreuer, K. D. Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides. Solid State Ion. 125, 285–302 (1999).

    Article  CAS  Google Scholar 

  19. Fabbri, E., Pergolesi, D. & Traversa, E. Materials challenges toward proton conducting oxide fuel cells: A critical review. Chem. Soc. Rev. 10.1039/b902343g (2010).

  20. Zuo, C., Zha, S., Liu, M., Hatano, M. & Uchiyama, M. Ba(Zr0.1Ce0.7Y0.2)O3–δ as an electrolyte for low-temperature solid-oxide fuel cells. Adv. Mater. 18, 3318–3320 (2006).

    Article  CAS  Google Scholar 

  21. D’Epifanio, A., Fabbri, E., Di Bartolomeo, E., Licoccia, S. & Traversa, E. Design of BaZr0.8Y0.2O3–δ protonic conductor to improve the electrochemical performance in intermediate temperature solid oxide fuel cells (IT-SOFCs). Fuel Cells 8, 69–76 (2008).

    Article  Google Scholar 

  22. Haile, S. M., Staneff, G. & Ryu, K. H. Non-stoichiometry, grain boundary transport and chemical stability of proton conducting perovskites. J. Mater. Sci. 36, 1149–1160 (2001).

    Article  CAS  Google Scholar 

  23. Cervera, R. B., Oyama, Y. & Yamaguchi, S. Low temperature synthesis of nanocrystalline proton conducting BaZr0.8Y0.2O3–δ by sol–gel method. Solid State Ion. 178, 569–574 (2007).

    Article  CAS  Google Scholar 

  24. Duval, S. B. C. et al. Electrical conductivity of the proton conductor BaZr0.9Y0.1O3–δ obtained by high temperature annealing. Solid State Ion. 178, 1437–1441 (2007).

    Article  CAS  Google Scholar 

  25. Babilo, P. & Haile, S. M. Enhanced sintering of yttrium-doped barium zirconate by addition of ZnO. J. Am. Ceram. Soc. 88, 2362–2368 (2005).

    Article  CAS  Google Scholar 

  26. Duval, S. B. C., Holtappels, P., Stimming, U. & Graule, T. Effect of minor element addition on the electrical properties of BaZr0.9Y0.1O3–δ . Solid State Ion. 179, 1112–1115 (2008).

    Article  CAS  Google Scholar 

  27. Yamazaki, Y., Hernandez-Sanchez, R. & Haile, S. M. High total proton conductivity in large-grained yttrium-doped barium zirconate. Chem. Mater. 21, 2755–2762 (2009).

    Article  CAS  Google Scholar 

  28. Shim, J. H., Gür, T. M. & Prinz, F. B. Proton conduction in thin film yttrium-doped barium zirconate. Appl. Phys. Lett. 92, 253115 (2008).

    Article  Google Scholar 

  29. Pergolesi, D., Fabbri, E. & Traversa, E. Chemically stable anode-supported solid oxide fuel cells based on Y-doped barium zirconate thin films having improved performance. Electrochem. Commun. 12, 977–980 (2010).

    Article  CAS  Google Scholar 

  30. Sanna, S. et al. Fabrication and electrochemical properties of epitaxial samarium-doped ceria films on SrTiO3-buffered MgO substrates. Adv. Funct. Mater. 19, 1713–1719 (2009).

    Article  CAS  Google Scholar 

  31. Yoon, J. et al. Nanostructured cathode thin films with vertically-aligned nanopores for thin film SOFC and their characteristics. Appl. Surf. Sci. 254, 266–269 (2007).

    Article  CAS  Google Scholar 

  32. Kreuer, K. D. et al. Proton conducting alkaline earth zirconates and titanates for high drain electrochemical applications. Solid State Ion. 145, 295–306 (2001).

    Article  CAS  Google Scholar 

  33. Yamazaki, Y., Babilo, P. & Haile, S. M. Defect chemistry of yttrium-doped barium zirconate: A thermodynamic analysis of water uptake. Chem. Mater. 20, 6352–26357 (2008).

    Article  CAS  Google Scholar 

  34. Fabbri, E., Pergolesi, D., Licoccia, S. & Traversa, E. Does the increase in Y-dopant concentration improve the proton conductivity of BaZr1−xYxO3−δ fuel cell electrolytes? Solid State Ion. 181, 1043–1051 (2010).

    Article  CAS  Google Scholar 

  35. Tao, S. & Irvine, J. T. S. Conductivity studies of dense yttrium-doped BaZrO3 sintered at 1325 °C. J. Solid State Chem. 180, 3493–3503 (2007).

    Article  CAS  Google Scholar 

  36. Iguchi, F., Sata, N., Tsurui, T. & Yugami, H. Microstructures and grain boundary conductivity of BaZr1−xYxO3 (x=0.05, 0.10, 0.15) ceramics. Solid State Ion. 178, 691–695 (2007).

    Article  CAS  Google Scholar 

  37. Ahmed, I. et al. Crystal structure and proton conductivity of BaZr0.9Sc0.1O3–δ . J. Am. Ceram. Soc. 91, 3039–3044 (2008).

    Article  CAS  Google Scholar 

  38. Bonanos, N., Ellis, B., Knight, K. S. & Mahmood, M. N. Ionic conductivity of gadolinium-doped barium cerate perovskites. Solid State Ion. 35, 179–188 (1989).

    Article  Google Scholar 

  39. Fabbri, E., Oh, T., Licoccia, S., Traversa, E. & Wachsman, E. D. Mixed protonic/electronic conductor cathodes for intermediate temperature SOFCs based on proton conducting electrolytes. J. Electrochem. Soc. 156, B38–B45 (2009).

    Article  CAS  Google Scholar 

  40. Muller, J., Kreuer, K. D., Maier, J., Matsuo, S. & Ishigame, M. A conductivity and thermal gravimetric analysis of a Y-doped SrZrO3 single crystal. Solid State Ion. 97, 421–427 (1997).

    Google Scholar 

  41. Higuchi, T. et al. Protonic conduction in the single crystals of SrZr0.95M0.05O3 (M=Y, Sc, Yb, Er). J. Appl. Phys. 40, 4162–4163 (2001).

    Article  CAS  Google Scholar 

  42. Wang, W. & Virkar, A. V. Ionic and electron–hole conduction in BaZr0.93Y0.07O3−δ by 4-probe dc measurements. J. Power Sources 142, 1–9 (2005).

    Article  CAS  Google Scholar 

  43. Nomura, K. & Kageyama, H. Transport properties of Ba(Zr0.8Y0.2)O3−δ perovskite. Solid State Ion. 178, 661–665 (2007).

    Article  CAS  Google Scholar 

  44. Traversa, E. Toward the miniaturization of solid oxide fuel cells. Interface 18 (3), 49–52 (2009).

    CAS  Google Scholar 

  45. Yano, M., Tomita, A., Sano, M. & Hibino, T. Recent advances in single-chamber solid oxide fuel cells: A review. Solid State Ion. 177, 3351–3359 (2007).

    Article  CAS  Google Scholar 

  46. Ishihara, T., Shibayama, T., Honda, M., Nishiguchi, H. & Takita, Y. Intermediate temperature solid oxide fuel cells using LaGaO3 electrolyte II. Improvement of oxide ion conductivity and power density by doping Fe for Ga site of LaGaO3 . J. Electrochem. Soc. 147, 1332–1337 (2000).

    Article  CAS  Google Scholar 

  47. Esposito, V. & Traversa, E. Design of electroceramics for solid oxides fuel cell applications: Playing with ceria. J. Am. Ceram. Soc. 91, 1037–1051 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the Ministry of University and Research (MiUR) of Italy under the frame of the FISR project ‘Polymer and Ceramic Electrolyte for Fuel Cells: System Validation and Development of New Materials’, by the Ministry of Foreign Affairs (MAE) of Italy under the frame of the Italy-USA Joint Laboratory on ‘Nanomaterials for Hydrogen and Sustainable Energy’, and by the World Premier International Research Center Initiative of MEXT, Japan. The authors would like to thank A. Chincarini for his helpful contribution for X-ray photoelectron spectroscopy analysis, and D. Marrè and E. Bellingeri for clarifying discussions and comments.

Author information

Authors and Affiliations

Authors

Contributions

D.P. fabricated the films by PLD, carried out the XRD measurements, helped in the electrical measurements and wrote the manuscript together with E.F., who also carried out SEM observations, electrochemical measurements and analysed the data. A.D.E. and E.D.B. helped in the electrochemical measurements. A.T. and S.S. helped in thin-film fabrication and characterization. G.B. and S.L. supervised the work and revised the manuscript. E.T. was involved in study design, supervision of the work and manuscript revision.

Corresponding author

Correspondence to Enrico Traversa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1161 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pergolesi, D., Fabbri, E., D’Epifanio, A. et al. High proton conduction in grain-boundary-free yttrium-doped barium zirconate films grown by pulsed laser deposition. Nature Mater 9, 846–852 (2010). https://doi.org/10.1038/nmat2837

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2837

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing