Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The initialization and manipulation of quantum information stored in silicon by bismuth dopants


A prerequisite for exploiting spins for quantum data storage and processing is long spin coherence times. Phosphorus dopants in silicon (Si:P) have been favoured1,2,3,4,5,6,7,8,9,10 as hosts for such spins because of measured electron spin coherence times (T2) longer than any other electron spin in the solid state: 14 ms at 7 K with isotopically purified silicon11. Heavier impurities such as bismuth in silicon (Si:Bi) could be used in conjunction with Si:P for quantum information proposals that require two separately addressable spin species12,13,14,15. However, the question of whether the incorporation of the much less soluble Bi into Si leads to defect species that destroy coherence has not been addressed. Here we show that schemes involving Si:Bi are indeed feasible as the electron spin coherence time T2 is at least as long as for Si:P with non-isotopically purified silicon. We polarized the Si:Bi electrons and hyperpolarized the I=9/2 nuclear spin of 209Bi, manipulating both with pulsed magnetic resonance. The larger nuclear spin means that a Si:Bi dopant provides a 20-dimensional Hilbert space rather than the four-dimensional Hilbert space of an I=1/2 Si:P dopant.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Qubit initialization.
Figure 2: Qubit manipulation.
Figure 3: Storage of quantum information.
Figure 4: Storage times for classical (T1) and quantum (T2) information.


  1. Kane, B. E. A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998).

    CAS  Article  Google Scholar 

  2. Schofield, S. R. et al. Atomically precise placement of single dopants in Si. Phys. Rev. Lett. 91, 136104 (2003).

    CAS  Article  Google Scholar 

  3. Morton, J. J. L. et al. Solid-state quantum memory using the P-31 nuclear spin. Nature 455, 1085–1088 (2008).

    CAS  Article  Google Scholar 

  4. Morley, G. W. et al. Long-lived spin coherence in silicon with an electrical spin trap readout. Phys. Rev. Lett. 101, 207602 (2008).

    CAS  Article  Google Scholar 

  5. Greenland, P. T. et al. Coherent control of Rydberg states in silicon. Nature 465, 1057–1061 (2010).

    CAS  Article  Google Scholar 

  6. McCamey, D. R., van Tol, J., Morley, G. W. & Boehme, C. Fast nuclear spin hyperpolarization of phosphorus in silicon. Phys. Rev. Lett. 102, 027601 (2009).

    CAS  Article  Google Scholar 

  7. van Tol, J. et al. High-field phenomena of qubits. Appl. Magn. Res. 36, 259–268 (2009).

    Article  Google Scholar 

  8. Tyryshkin, A. M. et al. Coherence of spin qubits in silicon. J. Phys. Condens. Matter 18, S783–S794 (2006).

    CAS  Article  Google Scholar 

  9. Morello, A. et al. Single-shot readout of an electron spin in silicon. Preprint at (2010).

  10. Yang, A. et al. Subsecond hyperpolarization of the nuclear and electron spins of phosphorus in silicon by optical pumping of exciton transitions. Phys. Rev. Lett. 102, 257401 (2009).

    CAS  Article  Google Scholar 

  11. Tyryshkin, A. M., Lyon, S. A., Astashkin, A. V. & Raitsimring, A. M. Electron spin relaxation times of phosphorus donors in silicon. Phys. Rev. B 68, 193207 (2003).

    Article  Google Scholar 

  12. Benjamin, S. C. Quantum computing without local control of qubit–qubit interactions. Phys. Rev. Lett. 88, 017904 (2002).

    Article  Google Scholar 

  13. Stoneham, A. M., Fisher, A. J. & Greenland, P. T. Optically driven silicon-based quantum gates with potential for high-temperature operation. J. Phys. Condens. Matter 15, L447–L451 (2003).

    CAS  Article  Google Scholar 

  14. Benjamin, S. C. & Bose, S. Quantum computing with an always-on Heisenberg interaction. Phys. Rev. Lett. 90, 247901 (2003).

    Article  Google Scholar 

  15. Stoneham, A. M., Harker, A. H. & Morley, G. W. Could one make a diamond-based quantum computer? J. Phys. Condens. Matter 21, 364222 (2009).

    Article  Google Scholar 

  16. Feher, G. Electron spin resonance experiments on donors in silicon. I. Electronic structure of donors by the electron nuclear double resonance technique. Phys. Rev. 114, 1219–1244 (1959).

    CAS  Article  Google Scholar 

  17. Pajot, B. & Stoneham, A. M. A spectroscopic investigation of the lattice distortion at substitutional sites for group V and group VI donors in silicon. J. Phys. C 20, 5241–5252 (1987).

    CAS  Article  Google Scholar 

  18. Morley, G. W., Brunel, L-C. & van Tol, J. A multifrequency high-field pulsed electron paramagnetic resonance/electron-nuclear double resonance spectrometer. Rev. Sci. Instrum. 79, 064703 (2008).

    Article  Google Scholar 

  19. van Tol, J., Brunel, L. C. & Wylde, R. J. A quasioptical transient electron spin resonance spectrometer operating at 120 and 240 GHz. Rev. Sci. Instrum. 76, 074101 (2005).

    Article  Google Scholar 

  20. Morley, G. W. et al. Efficient dynamic nuclear polarization at high magnetic fields. Phys. Rev. Lett. 98, 220501 (2007).

    Article  Google Scholar 

  21. Lampel, G. Nuclear dynamic polarization by optical electronic saturation and optical pumping in semiconductors. Phys. Rev. Lett. 20, 491–493 (1968).

    CAS  Article  Google Scholar 

  22. Sekiguchi, T. et al. Hyperfine structure and nuclear hyperpolarization observed in the bound exciton luminescence of Bi donors in natural Si. Phys. Rev. Lett. 104, 137402 (2010).

    CAS  Article  Google Scholar 

  23. Schweiger, A. & Jeschke, G. Principles of Pulse Electron Paramagnetic Resonance (Oxford Univ. Press, 2001).

    Google Scholar 

  24. Castner, T. G. Direct measurement of the valley-orbit splitting of shallow donors in silicon. Phys. Rev. Lett. 8, 13–15 (1962).

    CAS  Article  Google Scholar 

  25. Castner, T. G. Orbach spin-lattice relaxation of shallow donors in silicon. Phys. Rev. 155, 816–825 (1967).

    CAS  Article  Google Scholar 

  26. Feher, G. & Gere, E. A. Electron spin resonance experiments on donors in silicon II. Electron spin relaxation effects. Phys. Rev. 114, 1245–1256 (1959).

    CAS  Article  Google Scholar 

  27. Du, J. F. et al. Preserving electron spin coherence in solids by optimal dynamical decoupling. Nature 461, 1265–1268 (2009).

    CAS  Article  Google Scholar 

  28. Li, D. et al. Intrinsic origin of spin echoes in dipolar solids generated by strong π pulses. Phys. Rev. B 77, 214306 (2008).

    Article  Google Scholar 

  29. Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nature Mater. 8, 383–387 (2009).

    CAS  Article  Google Scholar 

  30. Tyryshkin, A. M. & Lyon, S. A. Data presented at the Silicon Qubit Workshop 24–25 August (Univ. California, sponsored by Lawrence Berkeley National Laboratory and Sandia National Laboratory, 2009).

  31. Mohammadi, H. M., Morley, G. W. & Monteiro, T. S. Bismuth qubits in silicon: the role of EPR cancellation resonances. Phys. Rev. Lett. (in the press); preprint at (2010).

  32. George, R. E. et al. Electron spin coherence and electron nuclear double resonance of Bi donors in natural Si. Phys. Rev. Lett. (in the press); preprint at (2010).

Download references


We thank B. Pajot for supplying the Si:Bi samples. Our research was supported by the RCUK Basic Technologies programme, the EPSRC programme grant COMPASSS and a Wolfson Royal Society Research Merit Award. The National High Magnetic Field Laboratory is supported by NSF Cooperative Agreement No. DMR-0654118, and by the State of Florida. G.W.M. is supported by an 1851 Research Fellowship.

Author information

Authors and Affiliations



G.W.M., M.W. and C.W.M.K. carried out the experiments at 9.7 GHz; G.W.M. and J.v.T. carried out the experiments at 240 GHz. G.W.M. and P.T.G. carried out the simulations. G.W.M. analysed the data, which were interpreted by G.W.M., A.M.S., J.v.T., C.W.M.K. and G.A. The Letter was written by G.W.M., A.M.S., J.v.T., C.W.M.K. and G.A.

Corresponding author

Correspondence to Gavin W. Morley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 216 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Morley, G., Warner, M., Stoneham, A. et al. The initialization and manipulation of quantum information stored in silicon by bismuth dopants. Nature Mater 9, 725–729 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing