Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells

Abstract

Both human embryonic stem cells and induced pluripotent stem cells can self-renew indefinitely in culture; however, present methods to clonally grow them are inefficient and poorly defined for genetic manipulation and therapeutic purposes. Here we develop the first chemically defined, xeno-free, feeder-free synthetic substrates to support robust self-renewal of fully dissociated human embryonic stem and induced pluripotent stem cells. Material properties including wettability, surface topography, surface chemistry and indentation elastic modulus of all polymeric substrates were quantified using high-throughput methods to develop structure–function relationships between material properties and biological performance. These analyses show that optimal human embryonic stem cell substrates are generated from monomers with high acrylate content, have a moderate wettability and employ integrin αvβ3 and αvβ5 engagement with adsorbed vitronectin to promote colony formation. The structure–function methodology employed herein provides a general framework for the combinatorial development of synthetic substrates for stem cell culture.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: High-throughput screening of biomaterials for clonal growth.
Figure 2: Diverse hES cell behaviour on primary polymer arrays.
Figure 3: Mapping hES cell behaviour to polymer properties using primary arrays.
Figure 4: Correlating hES cell behaviour to polymer properties using primary arrays.
Figure 5: Mapping cell behaviour to surface chemistry using secondary arrays.
Figure 6: Short- and long-term feeder-free culture on hit polymer arrays.

Similar content being viewed by others

References

  1. Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  Google Scholar 

  2. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    CAS  Google Scholar 

  3. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    CAS  Google Scholar 

  4. Daley, G. Q. & Scadden, D. T. Prospects for stem cell-based therapy. Cell 132, 544–548 (2008).

    Article  CAS  Google Scholar 

  5. Saha, K. & Jaenisch, R. Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell 5, 584–595 (2009).

    Article  CAS  Google Scholar 

  6. Amit, M. et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev. Biol. 227, 271–278 (2000).

    Article  CAS  Google Scholar 

  7. Xu, C. et al. Feeder-free growth of undifferentiated human embryonic stem cells. Nature Biotechnol. 19, 971–974 (2001).

    Article  CAS  Google Scholar 

  8. Stojkovic, P. et al. Human-serum matrix supports undifferentiated growth of human embryonic stem cells. Stem Cells 23, 895–902 (2005).

    Article  CAS  Google Scholar 

  9. Braam, S. R. et al. Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alphavbeta5 integrin. Stem Cells 26, 2257–2265 (2008).

    Article  CAS  Google Scholar 

  10. Li, Y., Powell, S., Brunette, E., Lebkowski, J. & Mandalam, R. Expansion of human embryonic stem cells in defined serum-free medium devoid of animal-derived products. Biotechnol. Bioeng. 91, 688–698 (2005).

    Article  CAS  Google Scholar 

  11. Amit, M., Shariki, C., Margulets, V. & Itskovitz-Eldor, J. Feeder layer- and serum-free culture of human embryonic stem cells. Biol. Reprod. 70, 837–845 (2004).

    Article  CAS  Google Scholar 

  12. Yao, S. et al. Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Proc. Natl Acad. Sci. USA 103, 6907–6912 (2006).

    Article  CAS  Google Scholar 

  13. Ludwig, T. E. et al. Feeder-independent culture of human embryonic stem cells. Nature Methods 3, 637–646 (2006).

    Article  CAS  Google Scholar 

  14. Ludwig, T. E. et al. Derivation of human embryonic stem cells in defined conditions. Nature Biotechnol. 24, 185–187 (2006).

    Article  CAS  Google Scholar 

  15. Rodin, S. et al. Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nature Biotechnol. 28, 611–615 (2010).

    Article  CAS  Google Scholar 

  16. Li, Y. J., Chung, E. H., Rodriguez, R. T., Firpo, M. T. & Healy, K. E. Hydrogels as artificial matrices for human embryonic stem cell self-renewal. J. Biomedical Mater. Res. Part A 79, 1–5 (2006).

    Article  Google Scholar 

  17. Gerecht, S. et al. Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc. Natl Acad. Sci. USA 104, 11298–11303 (2007).

    Article  CAS  Google Scholar 

  18. Villa-Diaz, L. G. et al. Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nature Biotechnol. 28, 581–583 (2010).

    Article  CAS  Google Scholar 

  19. Melkoumian, Z. et al. Synthetic peptide–acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nature Biotechnol. 28, 606–610 (2010).

    Article  CAS  Google Scholar 

  20. Zou, J. et al. Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell 5, 97–110 (2009).

    Article  CAS  Google Scholar 

  21. Hockemeyer, D. et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nature Biotechnol. 27, 851–857 (2009).

    Article  CAS  Google Scholar 

  22. Zwaka, T. P. & Thomson, J. A. Homologous recombination in human embryonic stem cells. Nature Biotechnol. 21, 319–321 (2003).

    Article  CAS  Google Scholar 

  23. Anderson, D. G., Levenberg, S. & Langer, R. Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. Nature Biotechnol. 22, 863–866 (2004).

    Article  CAS  Google Scholar 

  24. Mei, Y. et al. Mapping the interactions among biomaterials, adsorbed proteins, and human embryonic stem cells. Adv. Mater. 21, 2781–2876 (2009).

    Article  CAS  Google Scholar 

  25. Green, J. J. et al. Nanoparticles for gene transfer to human embryonic stem cell colonies. Nano Lett. 8, 3126–3130 (2008).

    Article  CAS  Google Scholar 

  26. Tamada, Y. & Ikada, Y. Effect of preadsorbed proteins on cell-adhesion to polymer surfaces. J. Colloid Interf. Sci. 155, 334–339 (1993).

    Article  CAS  Google Scholar 

  27. Underwood, P. A., Steele, J. G. & Dalton, B. A. Effects of polystyrene surface chemistry on the biological activity of solid phase fibronectin and vitronectin, analysed with monoclonal antibodies. J. Cell Sci. 104, 793–803 (1993).

    CAS  Google Scholar 

  28. van Wachem, P. B. et al. The influence of protein adsorption on interactions of cultured human endothelial cells with polymers. J. Biomed. Mater. Res. 21, 701–718 (1987).

    Article  CAS  Google Scholar 

  29. Keselowsky, B. G., Collard, D. M. & Garcia, A. J. Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proc. Natl Acad. Sci. USA 102, 5953–5957 (2005).

    Article  CAS  Google Scholar 

  30. Luther, E., Kamentsky, L., Henriksen, M. & Holden, E. Cytometry, New Developments, Vol. 75, 4th edn, 185–218 (2004).

    Book  Google Scholar 

  31. Urquhart, A. J. et al. High throughput surface characterisation of a combinatorial material library. Adv. Mater. 19, 2486–2491 (2007).

    Article  CAS  Google Scholar 

  32. Lipski, A. M. et al. Nanoscale engineering of biomaterial surfaces. Adv. Mater. 19, 553–557 (2007).

    Article  CAS  Google Scholar 

  33. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  CAS  Google Scholar 

  34. Saha, K. et al. Substrate modulus directs neural stem cell behaviour. Biophys. J. 95, 4426–4438 (2008).

    Article  CAS  Google Scholar 

  35. Tamada, Y. & Ikada, Y. Effect of preadsorbed proteins on cell-adhesion to polymer surfaces. J. Colloid Inter. Sci. 155, 334–339 (1993).

    Article  CAS  Google Scholar 

  36. Thompson, M. T., Berg, M. C., Tobias, I. S., Rubner, M. F. & Van Vliet, K. J. Tuning compliance of nanoscale polyelectrolyte multilayers to modulate cell adhesion. Biomaterials 26, 6836–6845 (2005).

    Article  CAS  Google Scholar 

  37. Delcorte, A. et al. ToF-SIMS study of alternate polyelectrolyte thin films: Chemical surface characterization and molecular secondary ions sampling depth. Surf. Sci. 366, 149–165 (1996).

    Article  CAS  Google Scholar 

  38. Vickerman, J. C. ToF-SIMS: Surface Analysis by Mass Spectrometry (IM Publications, 2001).

    Google Scholar 

  39. Urquhart, A. J. et al. TOF-SIMS analysis of a 576 micropatterned copolymer array to reveal surface moieties that control wettability. Anal. Chem. 80, 135–142 (2008).

    Article  CAS  Google Scholar 

  40. Meng, Y. et al. Characterization of integrin engagement during defined human embryonic stem cell culture. FASEB J. 24, 1056–1065 (2010).

    Article  CAS  Google Scholar 

  41. Rowland, T. J. et al. Roles of integrins in human induced pluripotent stem cell growth on matrigel and vitronectin. Stem Cells Dev. 10.1089/scd.2009.0328 (2010).

  42. Hayman, E. G., Pierschbacher, M. D., Ohgren, Y. & Ruoslahti, E. Serum spreading factor (vitronectin) is present at the cell surface and in tissues. Proc. Natl Acad. Sci. USA 80, 4003–4007 (1983).

    Article  CAS  Google Scholar 

  43. Neuss, S. et al. Assessment of stem cell/biomaterial combinations for stem cell-based tissue engineering. Biomaterials 29, 302–313 (2008).

    Article  CAS  Google Scholar 

  44. Guilak, F. et al. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5, 17–26 (2009).

    Article  CAS  Google Scholar 

  45. Peerani, R. et al. Niche-mediated control of human embryonic stem cell self-renewal and differentiation. EMBO J. 26, 4744–4755 (2007).

    Article  CAS  Google Scholar 

  46. Constantinides, G., Kalcioglu, Z. I., McFarland, M., Smith, J. F. & Van Vliet, K. J. Probing mechanical properties of fully hydrated gels and biological tissues. J. Biomechanics 41, 3285–3289 (2008).

    Article  Google Scholar 

  47. Oliver, W. C. & Pharr, G. M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992).

    Article  CAS  Google Scholar 

  48. Cheng, Y-T. & Cheng, C-M. Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng. 44, 91–149 (2004).

    Article  Google Scholar 

  49. Hockemeyer, D. et al. A drug-inducible system for direct reprogramming of human somatic cells to pluripotency. Cell Stem Cell 3, 346–353 (2008).

    Article  CAS  Google Scholar 

  50. Watanabe, K. et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nature Biotechnol. 25, 681–686 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Beard, R. Alagappan, P. Xu, P. Wisniewski, C. Araneo, K. Wood, J. Daussman, R. Flannery, D. Fu, E. Luther and Compucyte for technical support. We thank all the members of the Langer laboratory and Jaenisch laboratory for helpful discussions and comments on the manuscript. R.J. was supported by NIH grants R37-CA084198, RO1-CA087869 and RO1-HD045022. R.L., R.J. and D.G.A. are advisors to Stemgent and R.L. and R.J. are cofounders of Fate Therapeutics. Financial support for J.Y. and A.H. is from the Wellcome Trust 085246. K.S. is supported by the Society in Science: the Branco Weiss Fellowship. D.G.A., R.L. and Y.M. are supported by NIH DE016516. Z.I.K. was supported by the US Army through the Institute for Soldier Nanotechnologies, under Contract W911NF-07-D-0004 with the US Army Research Office.

Author information

Authors and Affiliations

Authors

Contributions

All of the authors developed experiments, participated in the generation and analysis of data and assisted in the writing of the manuscript.

Corresponding authors

Correspondence to Robert Langer, Rudolf Jaenisch or Daniel G. Anderson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2491 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mei, Y., Saha, K., Bogatyrev, S. et al. Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nature Mater 9, 768–778 (2010). https://doi.org/10.1038/nmat2812

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2812

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing