Abstract
Since its discovery, the asymmetric Fano resonance has been a characteristic feature of interacting quantum systems. The shape of this resonance is distinctively different from that of conventional symmetric resonance curves. Recently, the Fano resonance has been found in plasmonic nanoparticles, photonic crystals, and electromagnetic metamaterials. The steep dispersion of the Fano resonance profile promises applications in sensors, lasing, switching, and nonlinear and slow-light devices.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout








Similar content being viewed by others
References
Rabinovitch, M. I. & Trubetskov, D. I. Oscillations and Waves in Linear and Nonlinear Systems (Kluwer Academic Publishers, 1989).
Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961).
Miroshnichenko, A. E., Flach, S. & Kivshar, Y. S. Fano resonances in nanoscale structures. Preprint at http://arxiv.org/abs/0902.3014 (2009).
Luo, H. G., Xiang, T., Wang, X. Q., Su, Z. B. & Yu, L. Fano resonance for Anderson impurity systems. Phys. Rev. Lett. 92, 256602 (2004).
Johnson, A. C., Marcus, C. M., Hanson, M. P. & Gossard, A. C. Coulomb-modified Fano resonance in a one-lead quantum dot. Phys. Rev. Lett. 93, 106803 (2004).
Kobayashi, K., Aikawa, H., Sano, A., Katsumoto, S. & Iye, Y. Fano resonance in a quantum wire with a side-coupled quantum dot. Phys. Rev. B 70, 035319 (2004).
Hessel, A. & Oliner, A. A. A new theory of Wood's anomalies on optical gratings. Appl. Opt. 4, 1275–1297 (1965).
Sarrazin, M., Vigneron, J. P. & Vigoureux, J. M. Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes. Phys. Rev. B 67, 085415 (2003).
Lee, H-T. & Poon, A. W. Fano resonances in prism-coupled square micropillars. Opt. Lett. 29, 5–7 (2004).
Rybin, M. V. et al. Fano resonance between Mie and Bragg scattering in photonic crystals. Phys. Rev. Lett. 103, 023901 (2009).
Fan, S. H. Sharp asymmetric line shapes in side-coupled waveguide-cavity systems. Appl. Phys. Lett. 80, 908–910 (2002).
Fan, S. H. & Joannopoulos, J. D. Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B 65, 235112 (2002).
Genet, C., van Exter, M. P. & Woerdman, J. P. Fano-type interpretation of red shifts and red tails in hole array transmission spectra. Opt. Commun. 225, 331–336 (2003).
Fan, S. H., Suh, W. & Joannopoulos, J. D. Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. A 20, 569–572 (2003).
Christ, A., Tikhodeev, S. G., Gippius, N. A., Kuhl, J. & Giessen, H. Waveguide-plasmon polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab. Phys. Rev. Lett. 91, 183901 (2003).
Christ, A. et al. Optical properties of planar metallic photonic crystal structures: Experiment and theory. Phys. Rev. B 70, 125113 (2004).
Sarrazin, M. & Vigneron, J-P. Bounded modes to the rescue of optical transmission. Europhys. News 38, 27–31 (2007).
Catrysse, P. B. & Fan, S. H. Near-complete transmission through subwavelength hole arrays in phonon-polaritonic thin films. Phys. Rev. B 75, 075422 (2007).
Ruan, Z. & Fan, S. Temporal coupled-mode theory for Fano resonance in light scattering by a single obstacle. J. Phys. Chem. C 114, 7324–7329 (2009).
Tribelsky, M. I., Flach, S., Miroshnichenko, A. E., Gorbach, A. V. & Kivshar, Y. S. Light scattering by a finite obstacle and Fano resonances. Phys. Rev. Lett. 100, 043903 (2008).
Miroshnichenko, A. E. et al. Fano resonances: A discovery that was not made 100 years ago. Opt. Phot. News 19, 48 (2008).
Hao, F. et al. Symmetry breaking in plasmonic nanocavities: Subradiant LSPR sensing and a tunable Fano resonance. Nano Lett. 8, 3983–3988 (2008).
Hao, F., Nordlander, P., Sonnefraud, Y., Van Dorpe, P. & Maier, S. A. Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: Implications for nanoscale optical sensing. ACS Nano 3, 643–652 (2009).
Mirin, N. A., Bao, K. & Nordlander, P. Fano resonances in plasmonic nanoparticle aggregates. J. Phys. Chem. A 113, 4028–4034 (2009).
Verellen, N. et al. Fano resonances in individual coherent plasmonic nanocavities. Nano Lett. 9, 1663–1667 (2009).
Maier, S. A. The benefits of darkness. Nature Mater. 8, 699–700 (2009).
Sonnefraud, Y. et al. Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities. ACS Nano 4, 1664–1670 (2010).
Liu, N. et al. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nature Mater. 8, 758–762 (2009).
Shvets, G. & Urzhumov, Y. A. Engineering the electromagnetic properties of periodic nanostructures using electrostatic resonances. Phys. Rev. Lett. 93, 243902 (2004).
Fedotov, V. A., Rose, M., Prosvirnin, S. L., Papasimakis, N. & Zheludev, N. I. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Phys. Rev. Lett. 99, 147401 (2007).
Christ, A. et al. Controlling the Fano interference in a plasmonic lattice. Phys. Rev. B 76, 201405 (2007).
Auguié, B. & Barnes, W. L. Collective resonances in gold nanoparticle arrays. Phys. Rev. Lett. 101, 143902 (2008).
Bachelier, G. et al. Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles. Phys. Rev. Lett. 101, 197401 (2008).
Le, F. et al. Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. ACS Nano 2, 707–718 (2008).
Yan, J-Y., Zhang, W., Duan, S., Zhao, X-G. & Govorov, A. O. Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects. Phys. Rev. B 77, 165301 (2008).
Kivshar, Y. S. Nonlinear optics: The next decade. Opt. Express 16, 22126–22128 (2008).
Ekinci, Y. et al. Electric and magnetic resonances in arrays of coupled gold nanoparticle in-tandem pairs. Opt. Express 16, 13287–13295 (2008).
Neubrech, F. et al. Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection. Phys. Rev. Lett. 101, 157403 (2008).
Nygaard, N., Piil, R. & Mølmer, K. Feshbach molecules in a one-dimensional optical lattice. Phys. Rev. A 77, 021601 (2008).
Pistolesi, F., Blanter, Y. M. & Martin, I. Self-consistent theory of molecular switching. Phys. Rev. B 78, 085127 (2008).
Cho, D. J., Wang, F., Zhang, X. & Shen, Y. R. Contribution of the electric quadrupole resonance in optical metamaterials. Phys. Rev. B 78, 121101 (2008).
Christ, A., Martin, O. J. F., Ekinci, Y., Gippius, N. A. & Tikhodeev, S. G. Symmetry breaking in a plasmonic metamaterial at optical wavelength. Nano Lett. 8, 2171–2175 (2008).
Petschulat, J. et al. Multipole approach to metamaterials. Phys. Rev. A 78, 043811 (2008).
Naether, U., Rivas, D. E., Larenas, M. A., Molina, M. I. & Vicencio, R. A. Fano resonances in waveguide arrays with saturable nonlinearity. Opt. Lett. 34, 2721–2723 (2009).
Chen, C-Y., Un, I-W., Tai, N-H. & Yen, T-J. Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance. Opt. Express 17, 15372–15380 (2009).
Cubukcu, E., Zhang, S., Park, Y. S., Bartal, G. & Zhang, X. Split ring resonator sensors for infrared detection of single molecular monolayers. Appl. Phys. Lett. 95, 043113 (2009).
Kanté, B., de Lustrac, A. & Lourtioz, J. M. In-plane coupling and field enhancement in infrared metamaterial surfaces. Phys. Rev. B 80, 035108 (2009).
Miroshnichenko, A. E. et al. Dynamics and instability of nonlinear Fano resonances in photonic crystals. Phys. Rev. A 79, 013809 (2009).
Liu, N. et al. Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett. 10, 1103–1107 (2010).
Miroshnichenko, A. E. Non-rayleigh limit of the lorenz-Mie solution and suppression of scattering by spheres of negative refractive index. Phys. Rev. A 80, 013808 (2009).
Miroshnichenko, A. E. Instabilities and quasi-localized states in nonlinear Fano-like systems. Phys. Lett. A 373, 3586–3590 (2009).
Miroshnichenko, A. E. Nonlinear Fano-Feshbach resonances. Phys. Rev. E 79, 026611 (2009).
Pakizeh, T., Langhammer, C., Zoric, I., Apell, P. & Käll, M. Intrinsic Fano interference of localized plasmons in Pd nanoparticles. Nano Lett. 9, 882–886 (2009).
Pakizeh, T. & Käll, M. Unidirectional ultracompact optical nanoantennas. Nano Lett. 9, 2343–2349 (2009).
Parsons, J. et al. Localized surface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays. Phys. Rev. B 79, 073412 (2009).
Li, Z-P., Shegai, T., Haran, G. & Xu, H-X. Multiple-particle nanoantennas for enormous enhancement and polarization control of light emission. ACS Nano 3, 637–642 (2009).
Papasimakis, N. & Zheludev, N. I. Metamaterial-induced transparency: Sharp Fano resonances and slow light. Opt. Phot. News 20, 22–27 (2009).
Urzhumov, Y. A., Korobkin, D., Neuner, B., Zorman, C. & Shvets, G. Optical properties of sub-wavelength hole arrays in SiC membranes. J. Opt. A 9, S322–S333 (2007).
Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T. & Wolff, P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998).
Garcia-Vidal, F. J., Martin-Moreno, L., Ebbesen, T. W. & Kuipers, L. Light passing through subwavelength apertures. Rev. Mod. Phys. 82, 729–787 (2010).
Stockman, M. I., Faleev, S. V. & Bergman, D. J. Localization versus delocalization of surface plasmons in nanosystems: Can one state have both characteristics? Phys. Rev. Lett. 87, 167401 (2001).
Born, M. & Wolf, E. Principles of Optics 7th edn (Cambridge Univ. Press, 1999).
Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles (Wiley, 1998).
Tribelsky, M. I. & Luk'yanchuk, B. S. Anomalous light scattering by small particles. Phys. Rev. Lett. 97, 263902 (2006).
Luk'yanchuk, B. S. et al. Peculiarities of light scattering by nanoparticles and nanowires near plasmon resonance frequencies in weakly dissipating materials. J. Opt. A 9, S294–S300 (2007).
Bystrov, A. M. & Gildenburg, V. B. Dipole resonances of an ionized cluster. J. Exp. Theor. Phys. 100, 428–439 (2005).
Wang, Z. B., Luk'yanchuk, B. S., Hong, M. H., Lin, Y. & Chong, T. C. Energy flow around a small particle investigated by classical Mie theory. Phys. Rev. B 70, 035418 (2004).
Luk'yanchuk, B. S. et al. Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies. Appl. Phys. A 89, 259–264 (2007).
Luk'yanchuk, B. S. & Qiu, C-W. Enhanced scattering efficiencies in spherical particles with weakly dissipating anisotropic materials. Appl. Phys. A 92, 773–776 (2008).
Brown, L. V., Sobhani, H., Lassiter, J. B., Nordlander, P. & Halas, N. J. Heterodimers: Plasmonic properties of mismatched nanoparticle pairs. ACS Nano 4, 819–832 (2010).
Hu, Y., Noelck, S. J. & Drezek, R. A. Symmetry breaking in gold-silica-gold multilayer nanoshells. ACS Nano 4, 1521–1528 (2010).
Zhang, S., Genov, D. A., Wang, Y., Liu, M. & Zhang, X. Plasmon-induced transparency in metamaterials. Phys. Rev. Lett. 101, 047401 (2008).
Fan, J. A. et al. Self-assembled plasmonic nanoparticle clusters. Science 328, 1135–1138 (2010).
Hentschel, M. et al. Transition from isolated to collective modes in plasmonic oligomers. Nano Lett. 10, 2721–2726 (2010).
Bao, K., Mirin, N. & Nordlander, P. Fano resonances in planar silver nanosphere clusters. Appl. Phys. A 100, 333–339 (2010).
Zentgraf, T., Christ, A., Kuhl, J. & Giessen, H. Tailoring the ultrafast dephasing of quasiparticles in metallic photonic crystals. Phys. Rev. Lett. 93, 243901 (2004).
Klein, M. W., Tritschler, T., Wegener, M. & Linden, S. Lineshape of harmonic generation by metallic nanoparticles and metallic photonic crystal slabs. Phys. Rev. B 72, 115113 (2005).
Nau, D. et al. Correlation effects in disordered metallic photonic crystal slabs. Phys. Rev. Lett. 98, 133902 (2007).
Plum, E. et al. Metamaterials: Optical activity without chirality. Phys. Rev. Lett. 102, 113902 (2009).
Papasimakis, N. et al. Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency. Appl. Phys. Lett. 94, 211902 (2009).
Fedotov, V. A. et al. Temperature control of Fano resonances and transmission in superconducting metamaterials. Opt. Express 18, 9015–9019 (2010).
Fedotov, V. A. et al. Spectral collapse in ensembles of meta-molecules. Phys. Rev. Lett. 104, 223901 (2010).
Zheludev, N. I., Prosvirnin, S. L., Papasimakis, N. & Fedotov, V. A. Lasing spaser. Nature Photon. 2, 351–354 (2008).
Debus, C. & Bolivar, P. H. Terahertz biosensors based on double split ring arrays. Proc. SPIE 6987, 6987OU (2008).
Lahiri, B., Khokhar, A. Z., De La Rue, R. M., McMeekin, S. G. & Johnson, N. P. Asymmetric split ring resonators for optical sensing of organic materials. Opt. Express 17, 1107–1115 (2009).
Papasimakis, N. et al. Graphene in a photonic metamaterial. Opt. Express 18, 8353–8359 (2010).
Dicken, M. J. et al. Frequency tunable near-infrared metamaterials based on VO2 phase transition. Opt. Express 17, 18330–18339 (2009).
Sámson, Z. L. et al. Metamaterial electro-optic switch of nanoscale thickness. Appl. Phys. Lett. 96, 143105 (2010).
Nikolaenko, A. E. et al. Carbon nanotubes in a photonic metamaterial. Phys. Rev. Lett. 104, 153902 (2010).
Maier, S. A. et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nature Mater. 2, 229–232 (2003).
Kawata, S., Ono, A. & Verma, P. Subwavelength colour imaging with a metallic nanolens. Nature Photon. 2, 438–442 (2008).
Liu, M., Lee, T-W., Gray, S. K., Guyot-Sionnest, P. & Pelton, M. Excitation of dark plasmons in metal nanoparticles by a localized emitter. Phys. Rev. Lett. 102, 107401 (2009).
Acknowledgements
The authors acknowledge valuable technical assistance from Dr Nikolay A. Mirin, J. Britt Lassiter and Shaunak Mukherjee. The research presented in this paper is supported in part by the Agency for Science, Technology and Research (A*STAR) for financial support (THz S&T Inter-RI Program, Project 082 141 0039, SERC Metamaterials Program on Superlens, grant no. 092 154 0099 and A*STAR TSRP Program, grant no. 102 152 0018) (B.L. and C.T.C.); the UK Engineering and Physical Sciences Research Council and the Royal Society (S.A.M. and N.I.Z.); the US Department of Defense NSSEFF (N.J.H.), the Robert A. Welch Foundation C-1220 and C-1222, and the Center for Advanced Solar Photophysics, a Energy Frontier Research Center funded by the US Department of Energy (N.J.H. and P.N.); and the Deutsche Forschungsgemeinschaft of the Federal Republic of Germany (FOR 557, FOR 730, SPP1391) and the Bundesministerium für Bildung und Forschung (H.G.) for support.
Author information
Authors and Affiliations
Contributions
B.L. and C.T.C. initiated the section The Fano resonance'. N.I.Z. initiated the section 'Fano resonances in metamaterials'. S.A.M., N.J.H. and P.N. initiated the section 'Fano resonances in plasmonic nanostructures'. H.G. initiated the sections 'Fano resonances in metallic photonic crystals' and 'Plasmon-induced transparency in metamaterials'. All authors contributed equally to the 'Applications' section and to editing. B.L., P.N. and N.J.H. carried out the main final edits.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Luk'yanchuk, B., Zheludev, N., Maier, S. et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nature Mater 9, 707–715 (2010). https://doi.org/10.1038/nmat2810
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat2810
This article is cited by
-
Quantum interference between dark-excitons and zone-edged acoustic phonons in few-layer WS2
Nature Communications (2023)
-
Hybrid organic–inorganic two-dimensional metal carbide MXenes with amido- and imido-terminated surfaces
Nature Chemistry (2023)
-
A Fano-resonance plasmonic assembly for broadband-enhanced coherent anti-Stokes Raman scattering
Scientific Reports (2023)
-
High Figure of Merit Refractive Index Sensor Derived From the Axial Length Ratio of Elliptically Polarized Light of Chiral Plasmonic Structure Arrays
Plasmonics (2023)
-
Plasmonic characteristics of rhodium dual broken nanorings in UV–visible regime
Applied Physics B (2023)