Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reversible electric control of exchange bias in a multiferroic field-effect device

Abstract

Electric-field control of magnetization has many potential applications in magnetic memory storage, sensors and spintronics. One approach to obtain this control is through multiferroic materials. Instead of using direct coupling between ferroelectric and ferromagnetic order parameters in a single-phase multiferroic material, which only shows a weak magnetoelectric effect, a unique method using indirect coupling through an intermediate antiferromagnetic order parameter can be used. In this article, we demonstrate electrical control of exchange bias using a field-effect device employing multiferroic (ferroelectric/antiferromagnetic) BiFeO3 as the dielectric and ferromagnetic La0.7Sr0.3MnO3 as the conducting channel; we can reversibly switch between two distinct exchange-bias states by switching the ferroelectric polarization of BiFeO3. This is an important step towards controlling magnetization with electric fields, which may enable a new class of electrically controllable spintronic devices and provide a new basis for producing electrically controllable spin-polarized currents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The interplay between heterointerfacial degrees of freedom.
Figure 2: A schematic of magnetization inversion through exchange-bias modulation and magnetometry measurements.
Figure 3: A schematic of the BFO/LSMO field-effect device.
Figure 4: Transport measurements of the field-effect device.
Figure 5: Electric-field control of exchange bias.

Similar content being viewed by others

References

  1. Heber, J. Enter the oxides. Nature 459, 28–30 (2009).

    Article  CAS  Google Scholar 

  2. Ohtomo, A. & Hwang, H. Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423–426 (2004).

    Article  CAS  Google Scholar 

  3. Ueda, K., Tabata, H. & Kawai, T. Ferromagnetism in LaFeO3–LaCrO3 superlattices. Science 280, 1064–1066 (1998).

    Article  CAS  Google Scholar 

  4. Chakhalian, J. et al. Orbital reconstruction and covalent bonding at an oxide interface. Science 318, 1114–1117 (2007).

    Article  CAS  Google Scholar 

  5. Reyren, N. et al. Superconducting interfaces between insulating oxides. Science 317, 1196–1199 (2007).

    Article  CAS  Google Scholar 

  6. Brinkman, A. et al. Magnetic effects at the interface between non-magnetic oxides. Nature Mater. 6, 493–496 (2007).

    Article  CAS  Google Scholar 

  7. Chakhalian, J. et al. Magnetism at the interface between ferromagnetic and superconducting oxides. Nature Phys. 2, 244–248 (2006).

    Article  CAS  Google Scholar 

  8. Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D 38, R123–R152 (2005).

    Article  CAS  Google Scholar 

  9. Eerenstein, W., Mathur, N. D. & Scott, J. F. Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006).

    Article  CAS  Google Scholar 

  10. Ramesh, R. & Spaldin, N. A. Multiferroics: Progress and prospects in thin films. Nature Mater. 6, 21–29 (2007).

    Article  CAS  Google Scholar 

  11. Cheong, S. W. & Mostovoy, M. Multiferroics: A magnetic twist for ferroelectricity. Nature Mater. 6, 13–20 (2007).

    Article  CAS  Google Scholar 

  12. Bea, H., Gajek, M., Bibes, M. & Barthelemy, A. Spintronics with multiferroics. J. Phys. Condens. Matter 20, 434221 (2008).

    Article  Google Scholar 

  13. Yang, C. H. et al. Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films. Nature Mater. 8, 485–493 (2009).

    Article  CAS  Google Scholar 

  14. Yu, P. et al. Interface ferromagnetism and orbital reconstruction in BiFeO3–La0.7Sr0.3MnO3 heterostructures. Phys. Rev. Lett. 105, 027201 (2010).

    Article  CAS  Google Scholar 

  15. Nogues, J. & Schuller, I. K. Exchange bias. J. Magn. Magn. Mater. 192, 203–232 (1999).

    Article  CAS  Google Scholar 

  16. Berkowitz, A. E. & Takano, K. Exchange anisotropy —a review. J. Magn. Magn. Mater. 200, 552–570 (1999).

    Article  CAS  Google Scholar 

  17. Prellier, W., Singh, M. P. & Murugavel, P. The single-phase multiferroic oxides: from bulk to thin film. J. Phys. Condens. Matter 17, R803–R832 (2005).

    Article  CAS  Google Scholar 

  18. Hill, N. A. Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694–6709 (2000).

    Article  CAS  Google Scholar 

  19. Hill, N. A. & Filippetti, A. Why are there any magnetic ferroelectrics? J. Magn. Magn. Mater. 242, 976–979 (2002).

    Article  Google Scholar 

  20. Tokunaga, Y. et al. Composite domain walls in a multiferroic perovskite ferrite. Nature Mater. 8, 558–562 (2009).

    Article  CAS  Google Scholar 

  21. Zhao, T. et al. Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nature Mater. 5, 823–829 (2006).

    Article  CAS  Google Scholar 

  22. Borisov, P., Hochstrat, A., Chen, X., Kleemann, W. & Binek, C. Magnetoelectric switching of exchange bias. Phys. Rev. Lett. 94, 117203 (2005).

    Article  Google Scholar 

  23. Laukhin, V. et al. Electric-field control of exchange bias in multiferroic epitaxial heterostructures. Phys. Rev. Lett. 97, 227201 (2006).

    Article  CAS  Google Scholar 

  24. Dho, J. H., Qi, X. D., Kim, H., MacManus-Driscoll, J. L. & Blamire, M. G. Large electric polarization and exchange bias in multiferroic BiFeO3 . Adv. Mater. 18, 1445–1448 (2006).

    Article  CAS  Google Scholar 

  25. Hong, X. et al. Effect of electric field doping on the anisotropic magnetoresistance in doped manganites. Phys. Rev. B 74, 174406 (2006).

    Article  Google Scholar 

  26. Hong, X., Posadas, A., Lin, A. & Ahn, C. H. Ferroelectric-field-induced tuning of magnetism in the colossal magnetoresistive oxide La1−xSrxMnO3 . Phys. Rev. B 68, 134415 (2003).

    Article  Google Scholar 

  27. Molegraaf, H. J. A. et al. Magnetoelectric effects in complex oxides with competing ground states. Adv. Mater. 21, 3470–3474 (2009).

    Article  CAS  Google Scholar 

  28. Bea, H. et al. Mechanisms of exchange bias with multiferroic BiFeO3 epitaxial thin films. Phys. Rev. Lett. 100, 017204 (2008).

    Article  CAS  Google Scholar 

  29. Martin, L. W. et al. Nanoscale control of exchange bias with BiFeO3 thin films. Nano Lett. 8, 2050–2055 (2008).

    Article  CAS  Google Scholar 

  30. Hirakawa, K., Sakaki, H. & Yoshino, J. Mobility modulation of the two-dimensional electron-gas via controlled deformation of the electron wave-function in selectively doped AlGaAs–GaAs heterojunctions. Phys. Rev. Lett. 54, 1279–1282 (1985).

    Article  CAS  Google Scholar 

  31. Ando, T., Fowler, A. B. & Stern, F. Electronic-properties of two-dimensional systems. Rev. Mod. Phys. 54, 437–672 (1982).

    Article  CAS  Google Scholar 

  32. Park, J. H. et al. Direct evidence for a half-metallic ferromagnet. Nature 392, 794–796 (1998).

    Article  CAS  Google Scholar 

  33. Kawasaki, M. et al. Atomic control of the SrTiO3 crystal-surface. Science 266, 1540–1542 (1994).

    Article  CAS  Google Scholar 

  34. Mieville, L., Worledge, D., Geballe, T. H., Contreras, R. & Char, K. Transport across conducting ferromagnetic oxide metal interfaces. Appl. Phys. Lett 73, 1736–1738 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy under contract no. DE-AC02-05CH11231. Fabrication and measurement equipment were supported by AFOSR grant No FA9550-08-1-0305. P.Y. is funded by a grant from a Western Institute of Nanoelectronics fellowship. The authors also thank J. S. Lee, D. A. Arena and C. C. Kao for X-ray magnetic circular dichroism measurements, L. W. Martin for discussions, Glenair Inc. for providing us with Nano Miniature connectors used in our experiment at 5 K, Y. P. Chen for circuit board layout and J. Clarke for use of his laboratory.

Author information

Authors and Affiliations

Authors

Contributions

This work was a collaborative effort between the R.C.D. and R.R. groups. In the R.C.D. group, S.M.W. and S.A.C. designed the device and determined the processing steps. Device fabrication was carried out by S.M.W. The experimental measurement set-up was built and designed by S.A.C., and both S.M.W. and S.A.C. carried out the measurements. In the R.R. group, P.Y. grew all of the films and made SQUID magnetometer measurements. J.X.Z. carried out the PFM work and M.D.R. carried out the TEM study, both shown in the Supplementary Information.

Corresponding author

Correspondence to S. M. Wu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 461 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, S., Cybart, S., Yu, P. et al. Reversible electric control of exchange bias in a multiferroic field-effect device. Nature Mater 9, 756–761 (2010). https://doi.org/10.1038/nmat2803

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2803

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing