Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

From (π,0) magnetic order to superconductivity with (π,π) magnetic resonance in Fe1.02Te1−xSex


The iron chalcogenide Fe1+y(Te1−xSex) is structurally the simplest of the Fe-based superconductors1,2,3. Although the Fermi surface is similar to iron pnictides4,5, the parent compoundFe1+yTe exhibits antiferromagnetic order with an in-plane magnetic wave vector (π,0) (ref. 6). This contrasts the pnictide parent compounds where the magnetic order has an in-plane magnetic wave vector (π,π) that connects hole and electron parts of the Fermi surface7,8. Despite these differences, both the pnictide and chalcogenide Fe superconductors exhibit a superconducting spin resonance around (π,π) (refs 9, 10, 11). A central question in this burgeoning field is therefore how (π,π) superconductivity can emerge from a (π,0) magnetic instability12. Here, we report that the magnetic soft mode evolving from the (π,0)-type magnetic long-range order is associated with weak charge carrier localization. Bulk superconductivity occurs as magnetic correlations at (π,0) are suppressed and the mode at (π, π) becomes dominant for x>0.29. Our results suggest a common magnetic origin for superconductivity in iron chalcogenide and pnictide superconductors.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Magnetic and superconducting properties of Fe1.02(Te1−xSex) (0≤x<0.5).
Figure 2: Evolution of the long-range AFM order and Fermi-surface variation across the AFM transition in Fe1.02(Te1−xSex).
Figure 3: Evolution of superconductivity as a function of Se content for Fe1.02(Te1−xSex).
Figure 4: Difference of microscopic magnetic properties between samples with and without bulk superconductivity.


  1. Hsu, F. C. et al. Superconductivity in the PbO-type structure α-FeSe. Proc. Natl Acad. Sci. USA 105, 14262–14264 (2008).

    Article  CAS  Google Scholar 

  2. Fang, M. H. et al. Superconductivity close to magnetic instability in Fe(Se1−xTex)0.82 . Phys. Rev. B 78, 224503 (2008).

    Article  Google Scholar 

  3. Medvedev, S. et al. Electronic and magnetic phase diagram of β-Fe1.01Se with superconductivity at 36.7 K under pressure. Nature Mater. 8, 630–633 (2009).

    Article  CAS  Google Scholar 

  4. Subedi, A., Zhang, L. J., Singh, D. J. & Du, M. H. Density functional study of FeS, FeSe, and FeTe: Electronic structure, magnetism, phonons, and superconductivity. Phys. Rev. B 78, 134514 (2008).

    Article  Google Scholar 

  5. Xia, Y. et al. Fermi surface topology and low-lying quasiparticle dynamics of parent Fe1+xTe/Se superconductor. Phys. Rev. Lett. 103, 037002 (2009).

    Article  CAS  Google Scholar 

  6. Bao, W. et al. Tunable (δπ, δπ)-type antiferromagnetic order in α-Fe(Te, Se) superconductors. Phys. Rev. Lett. 102, 247001 (2009).

    Article  Google Scholar 

  7. de la Cruz, C. et al. Magnetic order close to superconductivity in the iron-based layered LaO1−xFxFeAs systems. Nature 453, 899–902 (2008).

    Article  CAS  Google Scholar 

  8. Huang, Q. et al. Neutron-diffraction measurements of magnetic order and a structural transition in the parent BaFe2As2 compound of FeAs-based high-temperature superconductors. Phys. Rev. Lett. 101, 257003 (2008).

    Article  CAS  Google Scholar 

  9. Christianson, A. D. et al. Unconventional superconductivity in Ba0.6K0.4Fe2As2 from inelastic neutron scattering. Nature 456, 930–932 (2008).

    Article  CAS  Google Scholar 

  10. Lumsden, M. D. et al. Two-dimensional resonant magnetic excitation in BaFe1.84Co0.16As2 . Phys. Rev. Lett. 102, 107005 (2009).

    Article  CAS  Google Scholar 

  11. Qiu, Y. M. et al. Spin gap and resonance at the nesting wave vector in superconducting FeSe0.4Te0.6 . Phys. Rev. Lett. 103, 067008 (2009).

    Article  Google Scholar 

  12. Balatsky, A. V. & Parker, D. Not all iron superconductors are the same. Physics 2, 59 (2009).

    Article  Google Scholar 

  13. Kamihara, Y., Watanabe, T., Hirano, M. & Hosono, H. Iron-based layered superconductor La[O1−xFx]FeAs (x=0.05–0.12) with TC=26 K. J. Am. Chem. Soc. 130, 3296–3297 (2008).

    Article  CAS  Google Scholar 

  14. Takahashi, H. et al. Superconductivity at 43 K in an iron-based layered compound LaO1−xFxFeAs. Nature 453, 376–378 (2008).

    Article  CAS  Google Scholar 

  15. Chen, X. H., Wu, T., Wu, G., Liu, R. H. & Fang, D. F. Superconductivity at 43 K in SmFeAsO1−xFx . Nature 453, 761–762 (2008).

    Article  CAS  Google Scholar 

  16. Rotter, M., Tegel, M. & Johrendt, D. Superconductivity at 38 K in the iron arsenide (Ba1−xKx)Fe2As2 . Phys. Rev. Lett. 101, 107006 (2008).

    Article  Google Scholar 

  17. Mazin, I. I., Singh, D. J., Johannes, M. D. & Du, M. H. Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO1−xFx . Phys. Rev. Lett. 101, 057003 (2008).

    Article  CAS  Google Scholar 

  18. Chubukov, A. V., Efremov, D. V. & Eremin, I. Magnetism, superconductivity, and pairing symmetry in iron-based superconductors. Phys. Rev. B 78, 134512 (2008).

    Article  Google Scholar 

  19. Maier, T. A., Graser, S., Scalapino, D. J. & Hirschfeld, P. Neutron scattering resonance and the iron-pnictide superconducting gap. Phys. Rev. B 79, 134520 (2009).

    Article  Google Scholar 

  20. Zhao, J. et al. Structural and magnetic phase diagram of CeFeAsO1−xFx and its relation to high-temperature superconductivity. Nature Mater. 7, 953–959 (2008).

    Article  CAS  Google Scholar 

  21. Luetkens, H. et al. The electronic phase diagram of the LaO1−xFxFeAs superconductor. Nature Mater. 8, 305–309 (2009).

    Article  CAS  Google Scholar 

  22. Drew, A. J. et al. Coexistence of static magnetism and superconductivity in SmFeAsO1−xFx as revealed by muon spin rotation. Nature Mater. 8, 310–314 (2009).

    Article  CAS  Google Scholar 

  23. Chen, H. et al. Coexistence of the spin-density wave and superconductivity in Ba1−xKxFe2As2 . Europhys. Lett. 85, 17006 (2009).

    Article  Google Scholar 

  24. Pratt, D. K. et al. Coexistence of competing antiferromagnetic and superconducting phases in the underdoped Ba(Fe0.953Co0.047)2As2 compound using X-ray and neutron scattering techniques. Phys. Rev. Lett. 103, 087001 (2009).

    Article  CAS  Google Scholar 

  25. Liu, T. J. et al. Charge-carrier localization induced by excess Fe in the superconductor Fe1+yTe1−xSex . Phys. Rev. B 80, 174509 (2009).

    Article  Google Scholar 

  26. Sales, B. C. et al. Bulk superconductivity at 14 K in single crystals of Fe1+yTexSe1−x . Phys. Rev. B 79, 094521 (2009).

    Article  Google Scholar 

  27. Khasanov, R. et al. Coexistence of incommensurate magnetism and superconductivity in Fe1+ySexTe1−x . Phys. Rev. B 80, 140511 (2009).

    Article  Google Scholar 

  28. Wen, J. et al. Short-range incommensurate magnetic order near the superconducting phase boundary in Fe1+δTe1−xSex . Phys. Rev. B 80 104506 (2009).

  29. Lumsden, M. D. et al. Evolution of spin excitations into the superconducting state in FeTe1−xSex . Nature Phys. 6, 182–186 (2010).

    Article  CAS  Google Scholar 

  30. Argyriou, D. N. et al. Incommensurate itinerant antiferromagnetic excitations and spin resonance in the FeTe0.6Se0.4 superconductor. Phys. Rev. B 81, 220503 (R) (2010).

    Article  Google Scholar 

  31. McQueen, T. M. et al. Extreme sensitivity of superconductivity to stoichiometry in Fe1+δSe. Phys. Rev. B 79, 014522 (2009).

    Article  Google Scholar 

Download references


The work at Tulane is supported by the NSF under grant DMR-0645305 for materials and equipment, and the DOE under DE-FG02-07ER46358 for personnel. Work at AMRI was supported by DARPA through grant HR 0011-09-1-0047. Work at NIST is in part supported by the NSF under grant DMR-0454672. Work at the Johns Hopkins University Institute for Quantum Matter is supported by the DOE under grant DE-FG02-08ER46544. D.N.A. and K.P. acknowledge the Deutsche Forschungsgemeinschaft for support under the priority program SPP 1458 and contract AR 613/1-2.

Author information

Authors and Affiliations



T.J.L, J.H., B.Q., D.F. and Z.Q.M. carried out sample growth, transport property and specific heat measurements (T.J.L and J.H. contributed equally). Neutron scattering measurements were carried out by W.B., M.R., S.A.J.K., K.P., S.M., D.N.A., A.H., Y.Q., V.T., A.T.S., J.A.R. and C.B. Magnetic susceptibility was measured by A.R., H.P. and L.S.

Corresponding authors

Correspondence to Z. Q. Mao or W. Bao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 605 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, T., Hu, J., Qian, B. et al. From (π,0) magnetic order to superconductivity with (π,π) magnetic resonance in Fe1.02Te1−xSex. Nature Mater 9, 718–720 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing