A self-assembly pathway to aligned monodomain gels


Aggregates of charged amphiphilic molecules have been found to access a structure at elevated temperature that templates alignment of supramolecular fibrils over macroscopic scales. The thermal pathway leads to a lamellar plaque structure with fibrous texture that breaks on cooling into large arrays of aligned nanoscale fibres and forms a strongly birefringent liquid. By manually dragging this liquid crystal from a pipette onto salty media, it is possible to extend this alignment over centimetres in noodle-shaped viscoelastic strings. Using this approach, the solution of supramolecular filaments can be mixed with cells at physiological temperatures to form monodomain gels of aligned cells and filaments. The nature of the self-assembly process and its biocompatibility would allow formation of cellular wires in situ that have any length and customized peptide compositions for use in biological applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Strings and gels with long-range internal alignment.
Figure 2: SEM evidence of massive alignment versus isotropy of nanofibre bundles.
Figure 3: Morphological changes resulting from thermal treatment.
Figure 4: Cell alignment in strings of aligned filaments.


  1. 1

    Whitesides, G. M., Mathias, J. P. & Seto, C. T. Molecular self-assembly and nanochemistry—a chemical strategy for the synthesis of nanostructures. Science 254, 1312–1319 (1991).

    CAS  Article  Google Scholar 

  2. 2

    Reches, M. & Gazit, E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300, 625–627 (2003).

    CAS  Article  Google Scholar 

  3. 3

    Kim, S. O. et al. Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates. Nature 424, 411–414 (2003).

    CAS  Article  Google Scholar 

  4. 4

    Nelson, R. et al. Structure of the cross-beta spine of amyloid-like fibrils. Nature 435, 773–778 (2005).

    CAS  Article  Google Scholar 

  5. 5

    Dobson, C. M. Protein folding and misfolding. Nature 426, 884–890 (2003).

    CAS  Article  Google Scholar 

  6. 6

    Chung, C. Y., Bien, H. & Entcheva, E. The role of cardiac tissue alignment in modulating electrical function. J. Cardiovasc. Electr. 18, 1323–1329 (2007).

    Article  Google Scholar 

  7. 7

    Davies, S. J. A., Goucher, D. R., Doller, C. & Silver, J. Robust regeneration of adult sensory axons in degenerating white matter of the adult rat spinal cord. J. Neurosci. 19, 5810–5822 (1999).

    CAS  Article  Google Scholar 

  8. 8

    Feinberg, A. W. et al. Muscular thin films for building actuators and powering devices. Science 317, 1366–1370 (2007).

    CAS  Article  Google Scholar 

  9. 9

    Merzlyak, A., Indrakanti, S. & Lee, S. W. Genetically engineered nanofiber-like viruses for tissue regenerating materials. Nano Lett. 9, 846–852 (2009).

    CAS  Article  Google Scholar 

  10. 10

    Bettinger, C. J., Langer, R. & Borenstein, J. T. Engineering substrate topography at the micro- and nanoscale to control cell function. Angew. Chem. Int. Ed. 48, 5406–5415 (2009).

    CAS  Article  Google Scholar 

  11. 11

    Kato, T., Mizoshita, N. & Kishimoto, K. Functional liquid-crystalline assemblies: Self-organized soft materials. Angew. Chem. Int. Ed. 45, 38–68 (2006).

    CAS  Article  Google Scholar 

  12. 12

    Gin, D. L., Gu, W. Q., Pindzola, B. A. & Zhou, W. J. Polymerized lyotropic liquid crystal assemblies for materials applications. Acc. Chem. Res. 34, 973–980 (2001).

    CAS  Article  Google Scholar 

  13. 13

    Stupp, S. I. & Osenar, P. in Polymerization in Organized Media in Synthesis of Polymers (ed. Schlüter, A. D.) (Wiley-VCH, 1999).

    Google Scholar 

  14. 14

    Greiner, A. & Wendorff, J. H. A fascinating method for the preparation of ultrathin fibres. Angew. Chem. Int. Ed. 46, 5670–5703 (2007).

    CAS  Article  Google Scholar 

  15. 15

    Hartgerink, J. D., Beniash, E. & Stupp, S. I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294, 1684–1688 (2001).

    CAS  Article  Google Scholar 

  16. 16

    Behanna, H. A., Donners, J. J. J. M., Gordon, A. C. & Stupp, S. I. Coassembly of amphiphiles with opposite peptide polarities into nanofibers. J. Am. Chem. Soc. 127, 1193–1200 (2005).

    CAS  Article  Google Scholar 

  17. 17

    Ruberti, J. W. et al. Quick-freeze/deep-etch visualization of age-related lipid accumulation in Bruch’s membrane. Invest. Ophthalmol. Vis. Sci. 44, 1753–1759 (2003).

    Article  Google Scholar 

  18. 18

    Bull, S. R. et al. Magnetic resonance imaging of self-assembled biomaterial scaffolds. Bioconjugate Chem. 16, 1343–1348 (2005).

    CAS  Article  Google Scholar 

  19. 19

    Glatter, O. & Kratky, O. (eds) Small Angle X-ray Scattering (Academic, 1982).

  20. 20

    Tovar, J. D., Claussen, R. C. & Stupp, S. I. Probing the interior of peptide amphiphile supramolecular aggregates. J. Am. Chem. Soc. 127, 7337–7345 (2005).

    CAS  Article  Google Scholar 

  21. 21

    Cheng, H., Zhang, K., Libera, J. A., de la Cruz, M. O. & Bedzyk, M. J. Polynucleotide adsorption to negatively charged surfaces in divalent salt solutions. Biophys. J. 90, 1164–1174 (2006).

    CAS  Article  Google Scholar 

  22. 22

    Jiang, H. Z., Guler, M. O. & Stupp, S. I. The internal structure of self-assembled peptide amphiphiles nanofibers. Soft. Matter. 3, 454–462 (2007).

    CAS  Article  Google Scholar 

  23. 23

    Lenz, P. & Nelson, D. R. Hexatic undulations in curved geometries. Phys. Rev. E 67, 031502 (2003).

    Article  Google Scholar 

  24. 24

    Sandre, O., Moreaux, L. & Brochard-Wyart, F. Dynamics of transient pores in stretched vesicles. Proc. Natl Acad. Sci. USA 96, 10591–10596 (1999).

    CAS  Article  Google Scholar 

  25. 25

    De Wit, A., Gallez, D. & Christov, C. I. Nonlinear evolution equations for thin liquid films with insoluble surfactants. Phys. Fluids 6, 3256–3266 (1994).

    CAS  Article  Google Scholar 

  26. 26

    Oron, A., Davis, S. H. & Bankoff, S. G. Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69, 931–980 (1997).

    CAS  Article  Google Scholar 

  27. 27

    Liu, Y. S., Li, M. H., Bansil, R. & Steinhart, M. Kinetics of phase transition from lamellar to hexagonally packed cylinders for a triblock copolymer in a selective solvent. Macromolecules 40, 9482–9490 (2007).

    CAS  Article  Google Scholar 

  28. 28

    Solis, F. J., Funkhouser, C. M. & Thornton, K. Conditions for overall planarity in membranes: Applications to multicomponent membranes with lamellar morphology. Europhys. Lett. 82, 38001 (2008).

    Article  Google Scholar 

  29. 29

    Mayes, A. M. & de la Cruz, M. O. Strain effects on the thermal stability of rod eutectics. Acta Metall. 37, 615–620 (1989).

    CAS  Article  Google Scholar 

  30. 30

    Ide, Y. & Ophir, Z. Orientation development in thermotropic liquid crystal polymers. Polym. Eng. Sci. 23, 261–265 (1983).

    CAS  Article  Google Scholar 

  31. 31

    Larson, R. G. & Mead, D. W. The Ericksen Number and Deborah Number cascades in sheared polymeric nematics. Liq. Cryst. 15, 151–169 (1993).

    CAS  Article  Google Scholar 

  32. 32

    Reneker, D. H., Yarin, A. L., Fong, H. & Koombhongse, S. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J. Appl. Phys. 87, 4531–4547 (2000).

    CAS  Article  Google Scholar 

  33. 33

    Barham, P. J. & Keller, A. High-strength polyethylene fibres from solution and gel spinning. J. Mater. Sci. 20, 2281–2302 (1985).

    CAS  Article  Google Scholar 

  34. 34

    Fujikake, H., Murashige, T., Sato, H., Kawakita, M. & Kikuchi, H. Molecular alignment enhancement phenomenon of polymer formed from a liquid crystal monomer in a liquid crystal solvent. Appl. Phys. Lett. 82, 1622–1624 (2003).

    CAS  Article  Google Scholar 

  35. 35

    Tranquillo, R. T. Self-organization of tissue-equivalents: the nature and role of contact guidance. Biochem. Soc. Symp. 65, 27–42 (1999).

    CAS  Google Scholar 

  36. 36

    Claycomb, W. C. et al. A cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc. Natl Acad. Sci. USA 95, 2979–2984 (1998).

    CAS  Article  Google Scholar 

Download references


This work was supported by the US Department of Energy-Basic Energy Sciences (DE-FG02-00ER45810, DE-FG02-08ER46539), National Institutes of Health (5-R01-EB003806, 5-R01-DE015920, 5-P50-NS054287), National Science Foundation (DMR-0605427), Department of Homeland Security Fellowship (M.A.G.), Non-Equilibrium Energy Research Center (NERC), an Energy Frontier Research Center funded by DOE-BES (award number DE-SC0000989 for L.C.P), Northwestern University’s NIH Biotechnology Training Program (pre-doctoral fellowship to J.R.M.), Ben Gurion University of Negev, Israel (post-doctoral fellowship for R.B.) and Generalitat de Catalunya (visiting scholar sponsorship for C.A.). Experiments made use of the following facilities at Northwestern University: J. B. Cohen X-ray Diffraction Facility, IMSERC, EPIC Facilities of the NUANCE Center, Keck Biophysics Facility, Biological Imaging Facility and the Institute for BioNanotechnology in Medicine and its Cleanroom Core Facility. The NUANCE Center is supported by the NSF-NSEC, NSF-MRSEC, Keck Foundation, the State of Illinois and Northwestern University. We acknowledge facilities support by the Materials Research Center through NSF-MRSEC grant DMR-0520513. X-ray measurements were carried out at the DuPont–Northwestern–Dow Collaborative Access Team (DND-CAT) Synchrotron Research Center located at Sector 5 of the Advanced Photon Source. DND-CAT is supported by the E. I. DuPont de Nemours, The Dow Chemical Company, the US National Science Foundation through Grant DMR-9304725 and the State of Illinois through the Department of Commerce and the Board of Higher Education Grant IBHE HECA NWU 96. Use of the Advanced Photon Source was supported by the US Department of Energy–Office of Basic Energy Sciences under Contract No. W-31-109-Eng-38 and DE-AC02-06CH11357. Use of the BioCARS Sector 14 was supported by the National Institutes of Health, National Center for Research Resources, under grant number RR007707. We also thank G. Darnell and S. Weigand for X-ray assistance and W. Claycomb for the generous gift of the HL-1 cells.

Author information




S.Z., M.A.G., A.M., L.C.P., R.B., C.A. and J.R.M. carried out experiments. M.A.G. and M.O.d.l.C. generated numerical data. M.A.G., M.O.d.l.C. and S.I.S developed a theoretical model. S.Z., M.A.G., L.C.P., R.B., J.R.M., M.O.d.l.C. and S.I.S. wrote the paper.

Corresponding authors

Correspondence to Megan A. Greenfield or Samuel I. Stupp.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2286 kb)

Supplementary Information

Supplementary Information (MP4 8711 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, S., Greenfield, M., Mata, A. et al. A self-assembly pathway to aligned monodomain gels. Nature Mater 9, 594–601 (2010). https://doi.org/10.1038/nmat2778

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing