Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Observation of shell effects in superconducting nanoparticles of Sn


In a zero-dimensional superconductor, quantum size effects1,2 (QSE) not only set the limit to superconductivity, but are also at the heart of new phenomena such as shell effects, which have been predicted to result in large enhancements of the superconducting energy gap3,4,5,6. Here, we experimentally demonstrate these QSE through measurements on single, isolated Pb and Sn nanoparticles. In both systems superconductivity is ultimately quenched at sizes governed by the dominance of the quantum fluctuations of the order parameter. However, before the destruction of superconductivity, in Sn nanoparticles we observe giant oscillations in the superconducting energy gap with particle size leading to enhancements as large as 60%. These oscillations are the first experimental proof of coherent shell effects in nanoscale superconductors. Contrarily, we observe no such oscillations in the gap for Pb nanoparticles, which is ascribed to the suppression of shell effects for shorter coherence lengths. Our study paves the way to exploit QSE in boosting superconductivity in low-dimensional systems.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of shell effects.
Figure 2: Experimental configuration and low-temperature superconducting properties of single, isolated Pb and Sn nanoparticles: observation of shell effects.
Figure 3: Comparison of experimental results with theoretical calculations obtained from finite-size corrections to the BCS model.


  1. Von Delft, J. Superconductivity in ultrasmall metallic grains. Ann. Phys. 10, 219–276 (2001).

    Article  CAS  Google Scholar 

  2. Anderson, P. W. Theory of dirty superconductors. J. Phys. Chem. Solids 11, 26–30 (1959).

    Article  CAS  Google Scholar 

  3. Kresin, V. Z. & Ovchinnikov, Y. N. Shell structure and strengthening of superconducting pair correlation in nanoclusters. Phys. Rev. B 74, 024514 (2006).

    Article  Google Scholar 

  4. Heiselberg, H. Pairing of fermions in atomic traps and nuclei. Phys. Rev. A 68, 053616 (2003).

    Article  Google Scholar 

  5. García-García, A. M., Urbina, J. D., Yuzbashyan, E. A., Richter, K. & Altshuler, B. L. Bardeen–Cooper–Schrieffer theory of finite-size superconducting metallic grains. Phys. Rev. Lett. 100, 187001 (2008).

    Article  Google Scholar 

  6. Olofsson, H., Aberg, S. & Leboeuf, P. Semiclassical theory of Bardeen–Cooper–Schieffer pairing-gap fluctuations. Phys. Rev. Lett 100, 037005 (2008).

    Article  CAS  Google Scholar 

  7. Ralph, D. C., Black, C. T. & Tinkham, M. Spectroscopic measurements of discrete electronic states in single metal particles. Phys. Rev. Lett. 74, 3241–3244 (1995).

    Article  CAS  Google Scholar 

  8. Bezryadin, A., Lau, C. N. & Tinkham, M. Quantum suppression of superconductivity in ultrathin nanowires. Nature 404, 971–974 (2000).

    Article  CAS  Google Scholar 

  9. Shanenko, A. A., Croitoru, M. D., Zgirski, M., Peeters, F. M. & Arutyunov, K. Size-dependent enhancement of superconductivity in Al and Sn nanowires: Shape-resonance effect. Phys. Rev. B 74, 052502 (2006).

    Article  Google Scholar 

  10. Qin, S., Kim, J., Niu, Q. & Shih, C-K. Superconductivity at the two-dimensional limit. Science 324, 1314–1317 (2009).

    Article  CAS  Google Scholar 

  11. Guo, Y. et al. Superconductivity modulated by quantum size effects. Science 306, 1915–1917 (2004).

    Article  CAS  Google Scholar 

  12. Zhang, F-Y. et al. Band structure and oscillatory electron–phonon coupling of Pb thin films determined by atomic-layer-resolved quantum-well states. Phys. Rev. Lett. 95, 096802 (2005).

    Article  Google Scholar 

  13. Shanenko, A. A., Croitoru, M. D. & Peeters, F. M. Quantum size effects on Tc of superconducting nanofilms. Europhys. Lett. 76, 498–504 (2006).

    Article  CAS  Google Scholar 

  14. Brun, C. et al. Reduction of the superconducting gap of ultrathin Pb islands grown on Si(111). Phys. Rev. Lett. 102, 207002 (2009).

    Article  Google Scholar 

  15. Bose, S., Raychaudhuri, P., Banerjee, R., Vasa, P. & Ayyub, P. Mechanism of the size dependence of the superconducting transition of nanostructured Nb. Phys. Rev. Lett. 95, 147003 (2005).

    Article  Google Scholar 

  16. Li, W. H. et al. Coexistence of ferromagnetism and superconductivity in Sn nanoparticles. Phys. Rev. B 77, 094508 (2008).

    Article  Google Scholar 

  17. Brihuega, I. et al. Quantum and critical fluctuations in the superconductivity of single, isolated Pb nanoparticles. Preprint at (2009).

  18. Tinkham, M. Introduction of Superconductivity 2nd edn (McGraw-Hill, 1996).

    Book  Google Scholar 

  19. Dynes, R. C., Narayanamurti, V. & Garno, J. P. Direct measurement of quasiparticle-lifetime broadening in a strong-coupled superconductor. Phys. Rev. Lett. 41, 1509–1512 (1978).

    Article  CAS  Google Scholar 

  20. Delft, V-J., Zaikin, A. D., Golubev, A. S. & Tichy, W. Parity-affected superconductivity in ultrasmall metallic grains. Phys. Rev. Lett. 77, 3189–3192 (1996).

    Article  Google Scholar 

  21. Dynes, R. C., Garno, J. P., Hertel, G. B. & Orlando, T. P. Tunneling study of superconductivity near the metal–insulator transition. Phys. Rev. Lett. 53, 2437–2440 (1984).

    Article  CAS  Google Scholar 

  22. Skocpol, W. J. & Tinkham, M. Fluctuations near superconducting phase transitions. Rep. Prog. Phys. 1049–1097 (1975).

  23. Bennemann, K. H. & Ketterson, J. B. Superconductivity: Conventional and Unconventional Superconductors Vol. 1 (Springer, 2008).

    Book  Google Scholar 

  24. Rodríguez, A. H., Trallero-Giner, C., Ulloa, S. E. & Marín-Antuña, J. Electronic states in a quantum lens. Phys. Rev. B 63, 125319 (2001).

    Article  Google Scholar 

  25. Kittel, C. Introduction to Solid State Physics 8th edn (Wiley, 2004).

    Google Scholar 

  26. Bergmann, G. & Rainer, D. The sensitivity of the transition temperature to changes in α2F(ω). Z. Phys. 263, 59–68 (1973).

    Article  CAS  Google Scholar 

  27. Berner, S. et al. Boron nitride nanomesh: Functionality from a corrugated monolayer. Angew. Chem. Int. Ed. 46, 5115–5119 (2007).

    Article  CAS  Google Scholar 

  28. Horcas, I. et al. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007).

    Article  CAS  Google Scholar 

Download references


We thank K. Richter and M. Ternes for critically reading the manuscript. S.B. thanks the Alexander von Humboldt foundation and I.B. the Marie Curie action for support. A.M.G.G. acknowledges financial support from the Spanish DGI through project no. FIS2007-62238.

Author information

Authors and Affiliations



S.B., I.B. and K.K. designed the research. S.B. and I.B. carried out the experiments supervised by K.K.; A.M.G.G. and J.D.U. provided the theoretical support. M.M.U. and C.H.M. helped in the experiments. S.B. and I.B. analysed the data. The letter was written by S.B. and A.M.G.G. All authors contributed to the scientific discussion and revised the manuscript.

Corresponding authors

Correspondence to Sangita Bose, Antonio M. García-García or Ivan Brihuega.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 468 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bose, S., García-García, A., Ugeda, M. et al. Observation of shell effects in superconducting nanoparticles of Sn. Nature Mater 9, 550–554 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing