Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Filled and glycosylated carbon nanotubes for in vivo radioemitter localization and imaging

Abstract

Functionalization of nanomaterials for precise biomedical function is an emerging trend in nanotechnology1. Carbon nanotubes are attractive as multifunctional carrier systems because payload can be encapsulated in internal space whilst outer surfaces can be chemically modified2. Yet, despite potential as drug delivery systems3,4 and radiotracers5,6,7,8, such filled-and-functionalized carbon nanotubes have not been previously investigated in vivo. Here we report covalent functionalization of radionuclide-filled single-walled carbon nanotubes and their use as radioprobes. Metal halides, including Na125I, were sealed inside single-walled carbon nanotubes to create high-density radioemitting crystals9 and then surfaces of these filled–sealed nanotubes were covalently modified with biantennary carbohydrates, improving dispersibility and biocompatibility10. Intravenous administration of Na125I-filled glyco-single-walled carbon nanotubes in mice was tracked in vivo using single-photon emission computed tomography. Specific tissue accumulation (here lung) coupled with high in vivo stability prevented leakage of radionuclide to high-affinity organs (thyroid/stomach) or excretion, and resulted in ultrasensitive imaging and delivery of unprecedented radiodose density. Nanoencapsulation of iodide within single-walled carbon nanotubes enabled its biodistribution to be completely redirected from tissue with innate affinity (thyroid) to lung. Surface functionalization of 125I-filled single-walled carbon nanotubes offers versatility towards modulation of biodistribution of these radioemitting crystals in a manner determined by the capsule that delivers them. We envisage that organ-specific therapeutics and diagnostics can be developed on the basis of the nanocapsule model described here.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Preparation of the construct.
Figure 2: Simultaneous detection of filling and functionalization.
Figure 3: Whole-animal SPECT/CT imaging, tissue biodistribution, blood circulation and histology following intravenous administration of filled, functionalized SWNTs.

Similar content being viewed by others

References

  1. Weissleder, R. et al. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nature Biotechnol. 23, 1418–1423 (2005).

    Article  CAS  Google Scholar 

  2. Martin, C. R. & Kohli, P. The emerging field of nanotube technology. Nature Rev. Drug Disc. 2, 29–37 (2003).

    Article  CAS  Google Scholar 

  3. Wu, W. et al. Targeted delivery of Amphotericin B to cells by using functionalized carbon nanotubes. Angew. Chem. Int. Ed. 44, 6358–6362 (2005).

    Article  CAS  Google Scholar 

  4. Prato, M., Kostarelos, K. & Bianco, A. Functionalized carbon nanotubes in drug design and discovery. Acc. Chem. Res. 41, 60–68 (2008).

    Article  CAS  Google Scholar 

  5. Singh, R. et al. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracer. Proc. Natl Acad. Sci. USA 103, 3357–3362 (2006).

    Article  CAS  Google Scholar 

  6. McDevitt, M. R. et al. Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes. J. Nucl. Med. 48, 1180–1189 (2007).

    Article  CAS  Google Scholar 

  7. Hartman, K. B., Hamlin, D. K., Wilbur, D. S. & Wilson, L. J. 211AtCl@US-tube nanocapsules: A new concept in radiotherapeutic-agent design. Small 3, 1496–1499 (2007).

    Article  CAS  Google Scholar 

  8. Liu, Z. et al. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nature Nanotech. 2, 47–52 (2007).

    Article  CAS  Google Scholar 

  9. Meyer, R. R. et al. Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes. Science 289, 1324–1326 (2000).

    Article  CAS  Google Scholar 

  10. Davis, B. G. Synthesis of glycoproteins. Chem. Rev. 102, 579–601 (2002).

    Article  CAS  Google Scholar 

  11. Liu, Z. et al. Imaging the dynamic behaviour of individual retinal chromophores confined inside carbon nanotubes. Nature Nanotech. 2, 422–425 (2007).

    Article  CAS  Google Scholar 

  12. Koshino, M. et al. Imaging of single organic molecules in motion. Science 316, 853 (2007).

    Article  CAS  Google Scholar 

  13. Iezzi, E. B. et al. Lutetium-based trimetallic nitride endohedral metallofullerenes: New contrast agents. Nano Lett. 2, 1187–1190 (2002).

    Article  CAS  Google Scholar 

  14. Koltover, V. K. in Progress in Fullerene Research (ed. Milton, L.) 199–233 (Nova, 2007).

    Google Scholar 

  15. Ohtsuki, T. et al. Insertion of Xe and Kr atoms into C60 and C70 fullerenes and the formation of dimers. Phys. Rev. Lett. 81, 967–970 (1998).

    Article  CAS  Google Scholar 

  16. Shao, L., Tobias, G., Huh, Y. & Green, M. L. H. Reversible filling of single walled carbon nanotubes opened by alkali hydroxides. Carbon 44, 2855–2858 (2006).

    Article  CAS  Google Scholar 

  17. Ballesteros, B. et al. Steam purification for the removal of graphitic shells coating catalytic particles and the shortening of single-walled carbon nanotubes. Small 4, 1501–1506 (2008).

    Article  CAS  Google Scholar 

  18. Chen, J. et al. Solution properties of single-walled carbon nanotubes. Science 282, 95–98 (1998).

    Article  CAS  Google Scholar 

  19. Chen, X. et al. Interfacing carbon nanotubes with living cells. J. Am. Chem. Soc. 128, 6292–6293 (2006).

    Article  CAS  Google Scholar 

  20. Wu, P. et al. Biocompatible carbon nanotubes generated by functionalization with glycodendrimers. Angew. Chem. Int Ed. 47, 5022–5025 (2008).

    Article  CAS  Google Scholar 

  21. Chen, X. et al. Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells. J. Am. Chem. Soc. 131, 890–891 (2009).

    Article  CAS  Google Scholar 

  22. Tsang, S. C., Chen, Y. K., Harris, P. J. F. & Green, M. L. H. A simple chemical method of opening and filling carbon nanotubes. Nature 372, 159–162 (1994).

    Article  CAS  Google Scholar 

  23. Nellist, P. D. & Pennycook, S. J. Direct imaging of the atomic configuration of ultradispersed catalysts. Science 274, 413–415 (1996).

    Article  CAS  Google Scholar 

  24. Hong, S. Y. et al. Atomic-scale detection of organic molecules coupled to single-walled carbon nanotubes. J. Am. Chem. Soc. 129, 10966–10967 (2007).

    Article  CAS  Google Scholar 

  25. Ballesteros, B., Tobias, G., Ward, M. A. H. & Green, M. L. H. Quantitative assessment of the amount of material encapsulated in filled carbon nanotubes. J. Phys. Chem. C 113, 2653–2656 (2009).

    Article  CAS  Google Scholar 

  26. Kostarelos, K. The long and short of carbon nanotube toxicity. Nature Biotechnol. 26, 774–776 (2008).

    Article  CAS  Google Scholar 

  27. Dwek, R. A. Glycobiology: Toward understanding the function of sugars. Chem. Rev. 96, 683–720 (1996).

    Article  CAS  Google Scholar 

  28. Varki, A. Biological roles of oligosaccharides. Glycobiology 3, 97–130 (1993).

    Article  CAS  Google Scholar 

  29. Sawa, M. et al. Glycoproteomic probes for fluorescent imaging of fucosylated glycans in vivo. Proc. Natl Acad. Sci. USA 103, 12371–12376 (2006).

    Article  CAS  Google Scholar 

  30. Mazzaferri, E. L. in The Thyroid: A Fundamental and Clinical Text (eds Braverman, L. E. & Utiger, R. D.) 922–945 (Lippincott-Raven, 1996).

    Google Scholar 

  31. Spitzweg, C. et al. In vivo sodium iodide symporter gene therapy of prostate cancer. Gene Therapy 8, 1524–1531 (2001).

    Article  CAS  Google Scholar 

  32. Lacerda, L. et al. Dynamic imaging of functionalized multi-walled carbon nanotube systemic circulation and urinary excretion. Adv. Mater. 20, 225–230 (2008).

    Article  CAS  Google Scholar 

  33. Beekman, F. J. et al. Towards in vivo nuclear microscopy: Iodine-125 imaging in mice using micro-pinholes. Eur. J. Nucl. Med. Mol. Imaging 29, 933–938 (2002).

    Article  Google Scholar 

  34. Marsee, D. K. et al. Inhibition of heat shock protein 90, a novel RET/PTC1-associated protein, increases radioiodide accumulation in thyroid cells. J. Biol. Chem. 279, 43990–43997 (2004).

    Article  CAS  Google Scholar 

  35. Chen, C. L., Wang, Y., Lee, J. J. S. & Tsui, B. M. W. Toward quantitative small animal pinhole SPECT: Assessment of quantitation accuracy prior to image compensations. Mol. Imaging. Biol. 11, 195–203 (2009).

    Article  CAS  Google Scholar 

  36. Hwang, A. B., Franc, B. L., Gullberg, G. T. & Hasegawa, B. H. Assessment of the sources of error affecting the quantitative accuracy of SPECT imaging in small animals. Phys. Med. Biol. 53, 2233–2252 (2008).

    Article  Google Scholar 

  37. Kan, V. L. & Bennett, J. E. Lectin-like attachment sites on murine pulmonary alveolar macrophages bind Aspergillus fumigatus conidia. J. Infect. Dis. 158, 407–414 (1988).

    Article  CAS  Google Scholar 

  38. Hickling, T. P. et al. Collectins and their role in lung immunity. J. Leukoc. Biol. 75, 27–33 (2004).

    Article  CAS  Google Scholar 

  39. Kanke, M. et al. Clearance of 141Ce-labeled microspheres from blood and distribution in specific organs following intravenous and intraarterial administration in beagle dogs. J. Pharm. Sci. 69, 755–762 (1980).

    Article  CAS  Google Scholar 

  40. Illum, L. et al. Blood clearance and organ deposition of intravenously administered colloidal particles. The effects of particle size, nature and shape. Int. J. Pharm. 12, 135–146 (1982).

    Article  CAS  Google Scholar 

  41. Berndorff, D. et al. Radioimmunotherapy of solid tumors by targeting extra domain B fibronectin: Identification of the best-suited radioimmunoconjugate. Clin. Cancer Res. 11, 7053s–7063s (2005).

    Article  CAS  Google Scholar 

  42. Liu, Z. et al. Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc. Natl Acad. Sci. USA 105, 1410–1415 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Samsung Scholarship Foundation (S.Y.H.), the FP7 European Community Marie Curie ERG and Ramón y Cajal Programmes (G.T.), MICINN Spain (B.B.), INSS Japan (S.L-P.) and Thomas Swan Co. Ltd. (SWNTs and funding), and K. Doores, O. Pearce, J. Errey, W. Liu and M. A. Ward for technical assistance. R.B.S. is a member of the European Community CARBIO research training network. K.K. and K.T.A-J. would like to acknowledge partial funding of this work by the FP7 Anticarb (HEALTH-2007-201587) research programme. H.A-B. wishes to acknowledge the Ministère de l’Enseignement Supérieur et de la Recherche Scientifique (Algeria) for a full Ph.D. scholarship. B.G.D. is a Royal Society–Wolfson Research Merit Award recipient and is supported by an EPSRC LSI platform grant.

Author information

Authors and Affiliations

Authors

Contributions

S.Y.H., G.T., R.B.S., M.L.H.G., K.K. and B.G.D. designed the research, S.Y.H., G.T., K.T.A-J., B.B., H.A-B., S.L-P., C.F. and S.J.M. carried out the experiments, S.Y.H., G.T., K.T.A-J., H.A-B., B.B., S.L-P., P.D.N., R.B.S., S.J.M., M.L.H.G., K.K. and B.G.D. analysed the data and S.Y.H., G.T., K.T.A-J., K.K. and B.G.D. wrote the paper.

Corresponding authors

Correspondence to Gerard Tobias, Kostas Kostarelos or Benjamin G. Davis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 6809 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, S., Tobias, G., Al-Jamal, K. et al. Filled and glycosylated carbon nanotubes for in vivo radioemitter localization and imaging. Nature Mater 9, 485–490 (2010). https://doi.org/10.1038/nmat2766

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2766

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing