Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Organic light-emitting transistors with an efficiency that outperforms the equivalent light-emitting diodes

Abstract

The potential of organic semiconductor-based devices for light generation is demonstrated by the commercialization of display technologies based on organic light-emitting diodes (OLEDs). Nonetheless, exciton quenching and photon loss processes still limit OLED efficiency and brightness. Organic light-emitting transistors (OLETs) are alternative light sources combining, in the same architecture, the switching mechanism of a thin-film transistor and an electroluminescent device. Thus, OLETs could open a new era in organic optoelectronics and serve as testbeds to address general fundamental optoelectronic and photonic issues. Here, we introduce the concept of using a p-channel/emitter/n-channel trilayer semiconducting heterostructure in OLETs, providing a new approach to markedly improve OLET performance and address these open questions. In this architecture, exciton–charge annihilation and electrode photon losses are prevented. Our devices are >100 times more efficient than the equivalent OLED, >2× more efficient than the optimized OLED with the same emitting layer and >10 times more efficient than any other reported OLETs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Trilayer OLET device structure and active materials forming the heterostructure.
Figure 2: Optical micrographs of the lit trilayer OLET and its emission spectra.
Figure 3: Optoelectronic characteristics of the trilayer OLET and topographical images of the individual layers forming the heterostructure.
Figure 4: Images of the light-emitting area within the OLET device channel.
Figure 5: EQE as a function of the applied gate voltage for the two trilayer heterostructure OLET configurations.
Figure 6: Device structure and optoelectronic characteristics of the trilayer OLED in direct and reverse configurations.

Similar content being viewed by others

References

  1. Yan, H. et al. A high-mobility electron-transporting polymer for printed transistors. Nature 457, 680–687 (2009).

    Article  Google Scholar 

  2. Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004).

    Article  CAS  Google Scholar 

  3. Malliaras, G. & Friend, R. H. An organic electronics primer. Phys. Today 58, 53–58 (2005).

    Article  CAS  Google Scholar 

  4. Park, S. H. et al. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nature Photon. 3, 297–303 (2009).

    Article  CAS  Google Scholar 

  5. Margapoti, E. et al. Excimer emission in single layer electroluminescent device based on [Ir(4,5-diphenyl-2-methylthiazolo)2(5-methyl-1,10-phenanthroline)]+[PF6]. J. Phys. Chem. C 113, 12517–12522 (2009).

    Article  CAS  Google Scholar 

  6. Chua, L-L. et al. General observation of n-type field-effect behaviour in organic semiconductors. Nature 434, 194–199 (2005).

    Article  CAS  Google Scholar 

  7. Muccini, M. A bright future for organic field-effect transistors. Nature Mater. 5, 605–613 (2006).

    Article  CAS  Google Scholar 

  8. Hepp, A. et al. Light-emitting field-effect transistor based on tatracene thin film. Phys. Rev. Lett. 91, 157406 (2003).

    Article  Google Scholar 

  9. Rost, C. et al. Ambipolar light-emitting organic field-effect transistor. Appl. Phys. Lett. 85, 1613–1615 (2004).

    Article  CAS  Google Scholar 

  10. Takenobu, T. et al. High current density in light-emitting transistors of organic single crystals. Phys. Rev. Lett. 100, 066601 (2008).

    Article  Google Scholar 

  11. Verlaak, S., Cheyns, D., Debucquoy, M., Arkhipov, V. & Heremans, P. Numerical simulation of tetracene light-emitting transistors: A detailed balance of exciton processes. Appl. Phys. Lett. 85, 2405–2407 (2004).

    Article  CAS  Google Scholar 

  12. Gehlhaar, R., Yahiro, M. & Adachi, C. Finite difference time domain analysis of the light extraction efficiency in organic light-emitting field-effect transistors. J. Appl. Phys. 104, 331161–331165 (2008).

    Article  Google Scholar 

  13. Santato, C. et al. Tetracene light-emitting transistors on flexible plastic substrates. Appl. Phys. Lett. 86, 1411061–1411063 (2005).

    Article  Google Scholar 

  14. Cicoria, F. et al. Organic light-emitting transistors based on solution-cast and vacuum-sublimed films of a rigid core thiophene oligomer. Adv. Mater. 18, 169–174 (2006).

    Article  Google Scholar 

  15. Capelli, R. et al. Investigation of the opto-electronic properties of organic light emitting transistors based on an intrinsically ambipolar material. J. Phys. Chem. C 112, 12993–12999 (2008).

    Article  CAS  Google Scholar 

  16. Yuen, M-Y. et al. Semiconducting and electroluminescent nanowires self-assembled from organoplatinum(II) complexes. Angew. Chem. Int. Ed. 47, 9895–9899 (2008).

    Article  CAS  Google Scholar 

  17. Yamamoto, H., Oyamada, T., Sasabe, H. & Adachi, C. Amplified spontaneous emission under optical pumping from an organic semiconductor laser structure equipped with transparent carrier injection electrodes. Appl. Phys. Lett. 84, 1401–1403 (2004).

    Article  CAS  Google Scholar 

  18. Baldo, M. A., Holmes, R. J. & Forrest, S. R. Prospects for electrically pumped organic lasers. Phys. Rev. B 66, 035321 (2002).

    Article  Google Scholar 

  19. List, E. J. W. et al. Interaction of singlet excitons with polarons in wide band-gap organic semiconductors: A quantitative study. Phys. Rev. B 64, 155204 (2001).

    Article  Google Scholar 

  20. Staudigel, J., Stößel, M., Steuber, F. & Simmerer, J. A quantitative numerical model of multilayer vapor-deposited organic emitting diodes. J. Appl. Phys. 86, 3895–3910 (1999).

    Article  CAS  Google Scholar 

  21. Gärtner, C., Karnutsch, C. & Lemmer, U. The influence of annihilation processes on the threshold current density of organic laser diodes. J. Appl. Phys. 101, 231071–231079 (2007).

    Article  Google Scholar 

  22. Swensen, J. S., Soci, C. & Heeger, A. J. Light emission from an ambipolar semiconducting polymer field-effect transistor. Appl. Phys. Lett. 87, 253511 (2005).

    Article  Google Scholar 

  23. Zaumseil, J., Friend, R. H. & Sirringhaus, H. Spatial control of the recombination zone in an ambipolar light-emitting organic transistor. Nature Mater. 5, 69–74 (2006).

    Article  CAS  Google Scholar 

  24. Zaumseil, J., Donley, C. L., Kim, J-S., Friend, R. H. & Sirringhaus, H. Efficient top-gate, ambipolar, light-emitting field-effect transistors based on a green-light-emitting polyfluorene. Adv. Mater. 18, 2708–2712 (2006).

    Article  CAS  Google Scholar 

  25. Bisri, S. Z. et al. High mobility and luminescent efficiency in organic single-crystal light-emitting transistors. Adv. Funct. Mater. 19, 1728–1735 (2009).

    Article  CAS  Google Scholar 

  26. Wang, Y., Kumashiro, R., Nouchi, R., Komatsu, N. & Tanigaki, K. Influence of interface modifications on carrier mobilities in rubrene single crystal ambipolar field-effect transistors. J. Appl. Phys. 105, 124912 (2009).

    Article  Google Scholar 

  27. Schidleja, M., Melzer, C. & Seggern, H. Electroluminescence from a pentacene based ambipolar organic field-effect transistor. Appl. Phys. Lett. 94, 123307 (2009).

    Article  Google Scholar 

  28. Zaumseil, J. et al. Quantum efficiency of ambipolar light-emitting polymer field-effect transistors. J. Appl. Phys 103, 064517 (2008).

    Article  Google Scholar 

  29. Ke, T-H. et al. High efficiency blue light emitting unipolar transistor incorporating multifunctional electrodes. Appl. Phys. Lett. 94, 1533071–1533073 (2009).

    Google Scholar 

  30. Namdas, E. B. et al. Gate-controlled light emitting diodes. Adv. Mater. 20, 1321–1324 (2008).

    Article  CAS  Google Scholar 

  31. Suganuma, N., Shimoji, N., Oku, Y. & Matsushige, K. Novel organic light-emitting transistors with PN-heteroboundary carrier recombination sites fabricated by lift-off patterning of organic semiconductor thin-films. J. Mater. Res. 22, 2982–2986 (2007).

    Article  CAS  Google Scholar 

  32. Namdas, E. B., Ledochowitsch, P., Yuen, J. D., Moses, D. & Heeger, A. J. High performance light emitting transistors. Appl. Phys. Lett. 92, 183304 (2008).

    Article  Google Scholar 

  33. Dinelli, F. et al. High-mobility ambipolar transport in organic light-emitting transistors. Adv. Mater. 18, 1416–1420 (2006).

    Article  CAS  Google Scholar 

  34. Matsushima, T. & Adachi, C. Extremely low voltage light-emitting diodes with p-doped alpha-sexithiophene hole transport and n-doped phenyldipyrenylphosphine oxide electron transport layers. Appl. Phys. Lett. 89, 253506 (2006).

    Article  Google Scholar 

  35. Facchetti, A. et al. Building blocks for n-type molecular and polymeric electronics. perfluoroalkyl- versus alkyl-functionalized oligothiophenes (nT;n=2–6). Systematics of thin film microstructure, semiconductor performance, and modeling of majority charge injection in field-effect transistors. J. Am. Chem. Soc. 126, 13859–13874 (2004).

    Article  CAS  Google Scholar 

  36. Garnier, F. et al. Dihexylquaterthiophene, a two-dimensional liquid crystal-like orgnic semiconductor with high transport properties. Chem. Mater. 10, 3334–3339 (1998).

    Article  CAS  Google Scholar 

  37. Schols, S. et al. Organic light-emitting diodes with field-effect-assisted electron transport based on α,ω-diperfluorohexyl-quaterthiophene. Adv. Funct. Mater. 18, 3645–3652 (2008).

    Article  CAS  Google Scholar 

  38. Ackermann, J. et al. Control of growth and charge transport properties of quaterthiophene thin films via hexyl chain substitutions. Org. Electr. 5, 213–222 (2004).

    Article  CAS  Google Scholar 

  39. Loi, M. A. et al. Supramolecular organization in ultra-thin films of α-sexithiophene on silicon dioxide. Nature Mater. 4, 81–85 (2005).

    Article  CAS  Google Scholar 

  40. Da Como, E., Loi, M. A., Murgia, M., Zamboni, R. & Muccini, M. J-aggregation in α-sexithiophene submonolayer films on silicon dioxide. J. Am. Chem. Soc. 128, 4277–4281 (2006).

    Article  CAS  Google Scholar 

  41. Yan, H., Kagata, T. & Okuzaki, H. Ambipolar pentacene/C60-based field-effect transistors with high hole and electron mobilities in ambient atmosphere. Appl. Phys. Lett. 94, 023305 (2009).

    Article  Google Scholar 

  42. Ye, R., Baba, M., Ohta, K., Kazunori Suzuki, K. & Mori, K. Fabrication of ambipolar organic heterojunction transistors with various sexithiophene alkyl-substituted derivatives. Jpn. J. Appl. Phys. 48, 04C168 (2009).

    Article  Google Scholar 

  43. Li, J-F., Chang, W-L., Ou, G-P. & Zhang, F-J. Air-stable ambipolar organic field effect transistors with heterojunction of pentacene and N,N′-bis(4-trifluoromethylben-zyl) perylene-3,4,9,10- tetracarboxylic diimide. Chin. Phys. B 18, 3002–3007 (2009).

    Article  CAS  Google Scholar 

  44. Uddin, A., Lee, C. B., Hu, X., Wong, T. K. S. & Sun, X. W. Effect of doping on optical and transport properties of charge carries in Alq3 . J. Cryst. Growth 288, 115–118 (2006).

    Article  CAS  Google Scholar 

  45. Muck, T. et al. In situ electrical characterization of DH4T field-effect transistors. Synth. Met. 146, 317–320 (2004).

    Article  CAS  Google Scholar 

  46. DiBenedetto, S. A., Facchetti, A., Rainer, M. A. & Marks, T. J. Molecular self-assembled monolayers and multilayers for organic and unconventional inorganic thin-film transistor applications. Adv. Mater. 21, 1407–1433 (2009).

    Article  CAS  Google Scholar 

  47. Pinto, J. C. et al. Organic thin film transistors with polymer brush gate dielectrics synthesized by atom transfer radical polymerization. Adv. Funct. Mater. 18, 36–43 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors kindly acknowledge R. Zamboni, G. Ruani and T. J. Marks for useful discussions, as well as the valuable technical support of M. Murgia. Financial support from Italian MIUR projects FIRBRBIP06YWBH (NODIS), and FIRB-RBIP0642YL (LUCI), Italian MSE project Industria 2015 (ALADIN), and EU projects PF6 035859-2 (BIMORE) and FP7-ICT- 248052 (PHOTO-FET) is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

R.C. defined the concept of the trilayer heterostructure, fabricated devices, executed optoelectronic experiments, analysed and interpreted results. S.T. defined the concept of the trilayer heterostructure, executed spectroscopic and photonic experiments, analysed and interpreted results. G.G. carried out AFM measurements, contributed to fabricate devices and to execute optoelectronic experiments. H.U. synthesized DH-4T and DFH-4T. A.F. supervised the synthesis and discussed the results. M.M. defined the concept of the trilayer heterostructure, took part to the key experiments, interpreted results and supervised the entire work. A.F. and M.M. wrote the manuscript.

Corresponding authors

Correspondence to Raffaella Capelli or Michele Muccini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 548 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capelli, R., Toffanin, S., Generali, G. et al. Organic light-emitting transistors with an efficiency that outperforms the equivalent light-emitting diodes. Nature Mater 9, 496–503 (2010). https://doi.org/10.1038/nmat2751

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2751

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing