Abstract
Theoretical calculations predict that by coupling an exothermic chemical reaction with a nanotube or nanowire possessing a high axial thermal conductivity, a self-propagating reactive wave can be driven along its length. Herein, such waves are realized using a 7-nm cyclotrimethylene trinitramine annular shell around a multiwalled carbon nanotube and are amplified by more than 104 times the bulk value, propagating faster than 2 m s−1, with an effective thermal conductivity of 1.28±0.2 kW m−1 K−1 at 2,860 K. This wave produces a concomitant electrical pulse of disproportionately high specific power, as large as 7 kW kg−1, which we identify as a thermopower wave. Thermally excited carriers flow in the direction of the propagating reaction with a specific power that scales inversely with system size. The reaction also evolves an anisotropic pressure wave of high total impulse per mass (300 N s kg−1). Such waves of high power density may find uses as unique energy sources.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Releasing chemical energy in spatially programmed ferroelectrics
Nature Communications Open Access 15 November 2022
-
Room temperature ferroelectricity in fluoroperovskite thin films
Scientific Reports Open Access 03 August 2017
-
Investigation of the effect of the structure of large-area carbon nanotube/fuel composites on energy generation from thermopower waves
Nanoscale Research Letters Open Access 30 September 2014
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Please, C. P., Liu, F. & McElwain, D. L. S. Condensed phase combustion travelling waves with sequential exothermic or endothermic reactions. Combust. Theor. Model. 7, 129–143 (2003).
Zel’dovich, Y. B. & Frank-Kamenetskii, D. A. The theory of thermal flame propagation. Zh. Fiz. Khim. 12, 100–105 (1938).
Roy, G. D., Frolov, S. M., Borisov, A. A. & Netzer, D. W. Pulse detonation propulsion: Challenges, current status, and future perspective. Prog. Energ. Combust. 30, 545–672 (2004).
Arimondi, M., Anselmi-Tamburini, U., Gobetti, A., Munir, Z. A. & Spinolo, G. Chemical mechanism of the Zr+O−2−>ZrO2 combustion synthesis reaction. J. Phys. Chem. B 101, 8059–8068 (1997).
Alexander, M. H. et al. Nitramine propellant ignition and combustion research. Prog. Energ. Combust. 17, 263–296 (1991).
Yu, C. H., Shi, L., Yao, Z., Li, D. Y. & Majumdar, A. Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Lett. 5, 1842–1846 (2005).
Chang, C. W., Okawa, D., Garcia, H., Majumdar, A. & Zettl, A. Nanotube phonon waveguide. Phys. Rev. Lett. 99, 045901 (2007).
Chang, C. W., Okawa, D., Majumdar, A. & Zettl, A. Solid-state thermal rectifier. Science 314, 1121–1124 (2006).
Akkutlu, I. Y. & Yortsos, Y. C. The dynamics of in situ combustion fronts in porous media. Combust. Flame 134, 229–247 (2003).
Hata, K. et al. Water-assisted highly efficient synthesis of impurity-free single-waited carbon nanotubes. Science 306, 1362–1364 (2004).
Prevo, B. G. & Velev, O. D. Controlled, rapid deposition of structured coatings from micro- and nanoparticle suspensions. Langmuir 20, 2099–2107 (2004).
Kulkarni, A. M. & Zukoski, C. F. Nanoparticle crystal nucleation: Influence of solution conditions. Langmuir 18, 3090–3099 (2002).
Simchi, A., Ahmadi, R., Reihani, S. M. S. & Mahdavi, A. Kinetics and mechanisms of nanoparticle formation and growth in vapour phase condensation process. Mater. Des. 28, 850–856 (2007).
Yusa, H. & Watanuki, T. X-ray diffraction of multiwalled carbon nanotube under high pressure: Structural durability on static compression. Carbon 43, 519–523 (2005).
Maniwa, Y. et al. Anomaly of X-ray diffraction profile in single-walled carbon nanotubes. Jpn. J. Appl. Phys. Part 2 38, L668–L670 (1999).
Cao, A. Y., Xu, C. L., Liang, J., Wu, D. H. & Wei, B. Q. X-ray diffraction characterization on the alignment degree of carbon nanotubes. Chem. Phys. Lett. 344, 13–17 (2001).
Volkov, E. N., Paletsky, A. A. & Korobeinichev, O. P. RDX flame structure at atmospheric pressure. Combust. Explos. Shock 44, 43–54 (2008).
Aleksandrov, V. V., Tukhtaev, R. K., Boldyrev, V. V. & Boldyreva, A. V. Mechanism of catalytic additive effects on diethylnitramine dinitrate combustion rates. Combust. Flame 35, 1–15 (1979).
Homan, B. E., Miller, M. S. & Vanderhoff, J. A. Absorption diagnostics and modelling investigations of RDX flame structure. Combust. Flame 120, 301–317 (2000).
Zenin, A. HMX and RDX—combustion mechanism and influence on modern double-base propellant combustion. J. Propuls. Power 11, 752–758 (1995).
Miyamoto, Y., Berber, S., Yoon, M., Rubio, A. & Tomanek, D. Onset of nanotube decay under extreme thermal and electronic excitations. Physica B 323, 78–85 (2002).
Begtrup, G. E. et al. Probing nanoscale solids at thermal extremes. Phys. Rev. Lett. 99, 155901 (2007).
Mingo, N. & Broido, D. A. Carbon nanotube ballistic thermal conductance and its limits. Phys. Rev. Lett. 95, 096105 (2005).
Hanson-Parr, D. M. & Parr, T. P. Thermal properties measurements of solid rocket propellant oxidizers and binder materials as a function of temperature. J. Energ. Mater. 17, 1–47 (1999).
Li, S. C., Williams, F. A. & Margolis, S. B. Effects of 2-phase flow in a model for nitramine deflagration. Combust. Flame 80, 329–349 (1990).
Liau, Y. C., Kim, E. S. & Yang, V. A comprehensive analysis of laser-induced ignition of RDX monopropellant. Combust. Flame 126, 1680–1698 (2001).
Oyumi, Y. Melt phase decomposition of RDX and two nitrosamine derivatives. Propellants Explos. Pyrotech. 13, 42–47 (1988).
Long, G. T., Vyazovkin, S., Brems, B. A. & Wight, C. A. Competitive vapourization and decomposition of liquid RDX. J. Phys. Chem. B 104, 2570–2574 (2000).
Kim, P., Shi, L., Majumdar, A. & McEuen, P. L. Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 8721, 215502–215505 (2001).
Takashiri, M., Takiishi, M., Tanaka, S., Miyazaki, K. & Tsukamoto, H. Thermoelectric properties of n-type nanocrystalline bismuth–telluride-based thin films deposited by flash evaporation. J. Appl. Phys. 101, 074301–074305 (2007).
Venkatasubramanian, R., Siivola, E., Colpitts, T. & O’Quinn, B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597–602 (2001).
Zhang, H. L. et al. Electrical and thermal properties of carbon nanotube bulk materials: Experimental studies for the 328–958 K temperature range. Phys. Rev. B 75, 205407 (2007).
Ghosh, S., Sood, A. K. & Kumar, N. Carbon nanotube flow sensors. Science 299, 1042–1044 (2003).
Pop, E. et al. Negative differential conductance and hot phonons in suspended nanotube molecular wires. Phys. Rev. Lett. 95, 155505 (2005).
Zhang, K. L., Chou, S. K., Ang, S. S. & Tang, X. S. A MEMS-based solid propellant microthruster with Au/Ti igniter. Sens. Actuat. A 122, 113–123 (2005).
Phipps, C., Luke, J., Lippert, T., Hauer, M. & Wokaun, A. Micropropulsion using a laser ablation jet. J. Propuls. Power 20, 1000–1011 (2004).
Patel, K. D. et al. Electrokinetic pumping of liquid propellants for small satellite microthruster applications. Sens. Actuat. B 132, 461–470 (2008).
Kuan, C. K., Chen, G. B. & Chao, Y. C. Development and ground tests of a 100-millinewton hydrogen peroxide monopropellant microthruster. J. Propuls. Power 23, 1313–1320 (2007).
Kemp, M. A. & Kovaleski, S. D. Ferroelectric plasma thruster for microspacecraft propulsion. J. Appl. Phys. 100, 113306–113311 (2006).
Chaalane, A., Rossi, C. & Esteve, D. The formulation and testing of new solid propellant mixture (DB plus x%BP) for a new MEMS-based microthruster. Sens. Actuat. A 138, 161–166 (2007).
Acknowledgements
This work was supported primarily by a grant to M.S.S. from the Air Force Office of Scientific Research and from an NSF Career Award also to M.S.S. S.B. appreciates support by the WCU (World Class University) programme through the Korea Science and Engineering Foundation funded by the Ministry of Education, Science and Technology, Korea (R31-2008-000-10029-0). J.T.A. and W.J.C. acknowledge fellowship support from the National Science Foundation and ILJU, respectively. J-H.H. acknowledges support from the Korea Research Foundation (MOEHRD, KRF-2006-214-D00117). We acknowledge T. M. Swager for help with TNA extraction.
Author information
Authors and Affiliations
Contributions
W.J.C., M.S.S. and J-H.H. developed the concept. W.J.C. and S.H. carried out experiments. W.J.C. and J.T.A. conducted modelling and simulations. All authors contributed to data analysis and scientific discussion.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 1886 kb)
Rights and permissions
About this article
Cite this article
Choi, W., Hong, S., Abrahamson, J. et al. Chemically driven carbon-nanotube-guided thermopower waves. Nature Mater 9, 423–429 (2010). https://doi.org/10.1038/nmat2714
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat2714
This article is cited by
-
Releasing chemical energy in spatially programmed ferroelectrics
Nature Communications (2022)
-
Micro/Nano-tribological Properties of Binary-Doped Ionic Liquid Lubricating Films on Alkyl Silane-Modified Silicon Surfaces
Tribology Letters (2020)
-
Thermoelectric Energy Harvesters: A Review of Recent Developments in Materials and Devices for Different Potential Applications
Topics in Current Chemistry (2020)
-
Room temperature ferroelectricity in fluoroperovskite thin films
Scientific Reports (2017)
-
Water-assisted self-sustained burning of metallic single-walled carbon nanotubes for scalable transistor fabrication
Nano Research (2017)