Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chemically driven carbon-nanotube-guided thermopower waves

Abstract

Theoretical calculations predict that by coupling an exothermic chemical reaction with a nanotube or nanowire possessing a high axial thermal conductivity, a self-propagating reactive wave can be driven along its length. Herein, such waves are realized using a 7-nm cyclotrimethylene trinitramine annular shell around a multiwalled carbon nanotube and are amplified by more than 104 times the bulk value, propagating faster than 2 m s−1, with an effective thermal conductivity of 1.28±0.2 kW m−1 K−1 at 2,860 K. This wave produces a concomitant electrical pulse of disproportionately high specific power, as large as 7 kW kg−1, which we identify as a thermopower wave. Thermally excited carriers flow in the direction of the propagating reaction with a specific power that scales inversely with system size. The reaction also evolves an anisotropic pressure wave of high total impulse per mass (300 N s kg−1). Such waves of high power density may find uses as unique energy sources.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic of an exothermic chemical reaction guided along a thermally conducting CNT and experimental realization of a MWNT encapsulated by TNA.
Figure 2: An accelerated, anisotropic reaction wave of TNA confined to an annular region around a nanotube thermal waveguide.
Figure 3: A chemically driven thermopower wave.
Figure 4: Anisotropic reaction propagation.

References

  1. 1

    Please, C. P., Liu, F. & McElwain, D. L. S. Condensed phase combustion travelling waves with sequential exothermic or endothermic reactions. Combust. Theor. Model. 7, 129–143 (2003).

    CAS  Article  Google Scholar 

  2. 2

    Zel’dovich, Y. B. & Frank-Kamenetskii, D. A. The theory of thermal flame propagation. Zh. Fiz. Khim. 12, 100–105 (1938).

    Google Scholar 

  3. 3

    Roy, G. D., Frolov, S. M., Borisov, A. A. & Netzer, D. W. Pulse detonation propulsion: Challenges, current status, and future perspective. Prog. Energ. Combust. 30, 545–672 (2004).

    Article  Google Scholar 

  4. 4

    Arimondi, M., Anselmi-Tamburini, U., Gobetti, A., Munir, Z. A. & Spinolo, G. Chemical mechanism of the Zr+O−2−>ZrO2 combustion synthesis reaction. J. Phys. Chem. B 101, 8059–8068 (1997).

    CAS  Article  Google Scholar 

  5. 5

    Alexander, M. H. et al. Nitramine propellant ignition and combustion research. Prog. Energ. Combust. 17, 263–296 (1991).

    CAS  Article  Google Scholar 

  6. 6

    Yu, C. H., Shi, L., Yao, Z., Li, D. Y. & Majumdar, A. Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Lett. 5, 1842–1846 (2005).

    CAS  Article  Google Scholar 

  7. 7

    Chang, C. W., Okawa, D., Garcia, H., Majumdar, A. & Zettl, A. Nanotube phonon waveguide. Phys. Rev. Lett. 99, 045901 (2007).

    CAS  Article  Google Scholar 

  8. 8

    Chang, C. W., Okawa, D., Majumdar, A. & Zettl, A. Solid-state thermal rectifier. Science 314, 1121–1124 (2006).

    CAS  Article  Google Scholar 

  9. 9

    Akkutlu, I. Y. & Yortsos, Y. C. The dynamics of in situ combustion fronts in porous media. Combust. Flame 134, 229–247 (2003).

    CAS  Article  Google Scholar 

  10. 10

    Hata, K. et al. Water-assisted highly efficient synthesis of impurity-free single-waited carbon nanotubes. Science 306, 1362–1364 (2004).

    CAS  Article  Google Scholar 

  11. 11

    Prevo, B. G. & Velev, O. D. Controlled, rapid deposition of structured coatings from micro- and nanoparticle suspensions. Langmuir 20, 2099–2107 (2004).

    CAS  Article  Google Scholar 

  12. 12

    Kulkarni, A. M. & Zukoski, C. F. Nanoparticle crystal nucleation: Influence of solution conditions. Langmuir 18, 3090–3099 (2002).

    CAS  Article  Google Scholar 

  13. 13

    Simchi, A., Ahmadi, R., Reihani, S. M. S. & Mahdavi, A. Kinetics and mechanisms of nanoparticle formation and growth in vapour phase condensation process. Mater. Des. 28, 850–856 (2007).

    CAS  Article  Google Scholar 

  14. 14

    Yusa, H. & Watanuki, T. X-ray diffraction of multiwalled carbon nanotube under high pressure: Structural durability on static compression. Carbon 43, 519–523 (2005).

    CAS  Article  Google Scholar 

  15. 15

    Maniwa, Y. et al. Anomaly of X-ray diffraction profile in single-walled carbon nanotubes. Jpn. J. Appl. Phys. Part 2 38, L668–L670 (1999).

    CAS  Article  Google Scholar 

  16. 16

    Cao, A. Y., Xu, C. L., Liang, J., Wu, D. H. & Wei, B. Q. X-ray diffraction characterization on the alignment degree of carbon nanotubes. Chem. Phys. Lett. 344, 13–17 (2001).

    CAS  Google Scholar 

  17. 17

    Volkov, E. N., Paletsky, A. A. & Korobeinichev, O. P. RDX flame structure at atmospheric pressure. Combust. Explos. Shock 44, 43–54 (2008).

    Article  Google Scholar 

  18. 18

    Aleksandrov, V. V., Tukhtaev, R. K., Boldyrev, V. V. & Boldyreva, A. V. Mechanism of catalytic additive effects on diethylnitramine dinitrate combustion rates. Combust. Flame 35, 1–15 (1979).

    CAS  Article  Google Scholar 

  19. 19

    Homan, B. E., Miller, M. S. & Vanderhoff, J. A. Absorption diagnostics and modelling investigations of RDX flame structure. Combust. Flame 120, 301–317 (2000).

    Article  Google Scholar 

  20. 20

    Zenin, A. HMX and RDX—combustion mechanism and influence on modern double-base propellant combustion. J. Propuls. Power 11, 752–758 (1995).

    CAS  Article  Google Scholar 

  21. 21

    Miyamoto, Y., Berber, S., Yoon, M., Rubio, A. & Tomanek, D. Onset of nanotube decay under extreme thermal and electronic excitations. Physica B 323, 78–85 (2002).

    CAS  Article  Google Scholar 

  22. 22

    Begtrup, G. E. et al. Probing nanoscale solids at thermal extremes. Phys. Rev. Lett. 99, 155901 (2007).

    CAS  Article  Google Scholar 

  23. 23

    Mingo, N. & Broido, D. A. Carbon nanotube ballistic thermal conductance and its limits. Phys. Rev. Lett. 95, 096105 (2005).

    CAS  Article  Google Scholar 

  24. 24

    Hanson-Parr, D. M. & Parr, T. P. Thermal properties measurements of solid rocket propellant oxidizers and binder materials as a function of temperature. J. Energ. Mater. 17, 1–47 (1999).

    CAS  Article  Google Scholar 

  25. 25

    Li, S. C., Williams, F. A. & Margolis, S. B. Effects of 2-phase flow in a model for nitramine deflagration. Combust. Flame 80, 329–349 (1990).

    CAS  Article  Google Scholar 

  26. 26

    Liau, Y. C., Kim, E. S. & Yang, V. A comprehensive analysis of laser-induced ignition of RDX monopropellant. Combust. Flame 126, 1680–1698 (2001).

    CAS  Article  Google Scholar 

  27. 27

    Oyumi, Y. Melt phase decomposition of RDX and two nitrosamine derivatives. Propellants Explos. Pyrotech. 13, 42–47 (1988).

    CAS  Article  Google Scholar 

  28. 28

    Long, G. T., Vyazovkin, S., Brems, B. A. & Wight, C. A. Competitive vapourization and decomposition of liquid RDX. J. Phys. Chem. B 104, 2570–2574 (2000).

    CAS  Article  Google Scholar 

  29. 29

    Kim, P., Shi, L., Majumdar, A. & McEuen, P. L. Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 8721, 215502–215505 (2001).

    Article  Google Scholar 

  30. 30

    Takashiri, M., Takiishi, M., Tanaka, S., Miyazaki, K. & Tsukamoto, H. Thermoelectric properties of n-type nanocrystalline bismuth–telluride-based thin films deposited by flash evaporation. J. Appl. Phys. 101, 074301–074305 (2007).

    Article  Google Scholar 

  31. 31

    Venkatasubramanian, R., Siivola, E., Colpitts, T. & O’Quinn, B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597–602 (2001).

    CAS  Article  Google Scholar 

  32. 32

    Zhang, H. L. et al. Electrical and thermal properties of carbon nanotube bulk materials: Experimental studies for the 328–958 K temperature range. Phys. Rev. B 75, 205407 (2007).

    Article  Google Scholar 

  33. 33

    Ghosh, S., Sood, A. K. & Kumar, N. Carbon nanotube flow sensors. Science 299, 1042–1044 (2003).

    CAS  Article  Google Scholar 

  34. 34

    Pop, E. et al. Negative differential conductance and hot phonons in suspended nanotube molecular wires. Phys. Rev. Lett. 95, 155505 (2005).

    Article  Google Scholar 

  35. 35

    Zhang, K. L., Chou, S. K., Ang, S. S. & Tang, X. S. A MEMS-based solid propellant microthruster with Au/Ti igniter. Sens. Actuat. A 122, 113–123 (2005).

    CAS  Article  Google Scholar 

  36. 36

    Phipps, C., Luke, J., Lippert, T., Hauer, M. & Wokaun, A. Micropropulsion using a laser ablation jet. J. Propuls. Power 20, 1000–1011 (2004).

    CAS  Article  Google Scholar 

  37. 37

    Patel, K. D. et al. Electrokinetic pumping of liquid propellants for small satellite microthruster applications. Sens. Actuat. B 132, 461–470 (2008).

    CAS  Article  Google Scholar 

  38. 38

    Kuan, C. K., Chen, G. B. & Chao, Y. C. Development and ground tests of a 100-millinewton hydrogen peroxide monopropellant microthruster. J. Propuls. Power 23, 1313–1320 (2007).

    CAS  Article  Google Scholar 

  39. 39

    Kemp, M. A. & Kovaleski, S. D. Ferroelectric plasma thruster for microspacecraft propulsion. J. Appl. Phys. 100, 113306–113311 (2006).

    Article  Google Scholar 

  40. 40

    Chaalane, A., Rossi, C. & Esteve, D. The formulation and testing of new solid propellant mixture (DB plus x%BP) for a new MEMS-based microthruster. Sens. Actuat. A 138, 161–166 (2007).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported primarily by a grant to M.S.S. from the Air Force Office of Scientific Research and from an NSF Career Award also to M.S.S. S.B. appreciates support by the WCU (World Class University) programme through the Korea Science and Engineering Foundation funded by the Ministry of Education, Science and Technology, Korea (R31-2008-000-10029-0). J.T.A. and W.J.C. acknowledge fellowship support from the National Science Foundation and ILJU, respectively. J-H.H. acknowledges support from the Korea Research Foundation (MOEHRD, KRF-2006-214-D00117). We acknowledge T. M. Swager for help with TNA extraction.

Author information

Affiliations

Authors

Contributions

W.J.C., M.S.S. and J-H.H. developed the concept. W.J.C. and S.H. carried out experiments. W.J.C. and J.T.A. conducted modelling and simulations. All authors contributed to data analysis and scientific discussion.

Corresponding author

Correspondence to Michael S. Strano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1886 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Choi, W., Hong, S., Abrahamson, J. et al. Chemically driven carbon-nanotube-guided thermopower waves. Nature Mater 9, 423–429 (2010). https://doi.org/10.1038/nmat2714

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing