Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ferroelastic switching for nanoscale non-volatile magnetoelectric devices


Multiferroics, where (anti-) ferromagnetic, ferroelectric and ferroelastic order parameters coexist1,2,3,4,5, enable manipulation of magnetic ordering by an electric field through switching of the electric polarization6,7,8,9. It has been shown that realization of magnetoelectric coupling in a single-phase multiferroic such as BiFeO3 requires ferroelastic (71, 109) rather than ferroelectric (180) domain switching6. However, the control of such ferroelastic switching in a single-phase system has been a significant challenge as elastic interactions tend to destabilize small switched volumes, resulting in subsequent ferroelastic back-switching at zero electric field, and thus the disappearance of non-volatile information storage10,11. Guided by our phase-field simulations, here we report an approach to stabilize ferroelastic switching by eliminating the stress-induced instability responsible for back-switching using isolated monodomain BiFeO3 islands. This work demonstrates a critical step to control and use non-volatile magnetoelectric coupling at the nanoscale. Beyond magnetoelectric coupling, it provides a framework for exploring a route to control multiple order parameters coupled to ferroelastic order in other low-symmetry materials.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Magnetoelectric coupling in BiFeO3.
Figure 2: Monodomain (001) BiFeO3 thin films.
Figure 3: Schematic illustration of the ferroelectric switching path of BiFeO3 thin films predicted by phase-field calculations.
Figure 4: Enhanced stability of ferroelastic switching by a BiFeO3 island.


  1. Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D 38, R123–R152 (2005).

    Article  CAS  Google Scholar 

  2. Spaldin, N. A. & Fiebig, M. The renaissance of magnetoelectric multiferroics. Science 309, 391–392 (2005).

    Article  CAS  Google Scholar 

  3. Eerenstein, W., Mathur, N. D. & Scott, J. F. Multiferroic and magnetoelectric materials. Nature 44, 759–765 (2006).

    Article  Google Scholar 

  4. Kimura, T. et al. Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003).

    Article  CAS  Google Scholar 

  5. Hur, N. et al. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429, 392–395 (2004).

    Article  CAS  Google Scholar 

  6. Zhao, T. et al. Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nature Mater. 5, 823–829 (2006).

    Article  CAS  Google Scholar 

  7. Chu, Y.-H. et al. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nature Mater. 7, 478–482 (2008).

    Article  CAS  Google Scholar 

  8. Lebeugle, D. et al. Electric-field-induced spin flop in BiFeO3 single crystals at room temperature. Phys. Rev. Lett. 100, 227602 (2008).

    Article  CAS  Google Scholar 

  9. Catalan, G. & Scott, J. F. Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009).

    Article  CAS  Google Scholar 

  10. Schmid, H. Some symmetry aspects of ferroics and single phase multiferroics. J. Phys. Condens. Matter 20, 434201 (2008).

    Article  Google Scholar 

  11. Cruz, M. P. et al. Strain control of domain-wall stability in epitaxial BiFeO3(110) films. Phys. Rev. Lett. 99, 217601 (2007).

    Article  CAS  Google Scholar 

  12. Schmid, H. On the possibility of ferromagnetic, antiferromagnetic, ferroelectric, and ferroelastic domain reorientations in magnetic and electric fields. Ferroelectrics 221, 9–17 (1999).

    Article  CAS  Google Scholar 

  13. Lisenkov, S., Rahmedov, D. & Bellaiche, L. Electric-field-induced paths in multiferroic BiFeO3 from atomistic simulations. Phys. Rev. Lett. 103, 047204 (2009).

    Article  CAS  Google Scholar 

  14. Bibes, M. & Barthelemy, A. Multiferroics: Towards a magnetoelectric memory. Nature Mater. 7, 425–426 (2008).

    Article  CAS  Google Scholar 

  15. Bea, H. et al. Tunnel magnetoresistance and robust room temperature exchange bias with multiferroic BiFeO3 epitaxial thin films. Appl. Phys. Lett. 89, 242114 (2006).

    Article  Google Scholar 

  16. Dho, J., Qi, X., Kim, H., MacManus-Driscoll, J. L. & Blamire, M. G. Large electric polarization and exchange bias in multiferroic BiFeO3 . Adv. Mater. 18, 1445–1448 (2006).

    Article  CAS  Google Scholar 

  17. Bea, H., Gajek, M., Bibes, M. & Barthelemy, A. Spintronics with multiferroics. J. Phys. Condens. Matter 20, 434231 (2008).

    Article  Google Scholar 

  18. Martin, L. W. et al. Nanoscale control of exchange bias with BiFeO3 thin films. Nano Lett. 8, 2050–2055 (2008).

    Article  CAS  Google Scholar 

  19. Jang, H. W. et al. Domain engineering for enhanced ferroelectric properties of epitaxial (001) BiFeO3 thin films. Adv. Mater. 21, 817–823 (2009).

    Article  CAS  Google Scholar 

  20. Seidel, J. et al. Conduction at domain walls in oxide multiferroics. Nature Mater. 8, 229–234 (2009).

    Article  CAS  Google Scholar 

  21. Streiffer, S. K. et al. Domain patterns in epitaxial rhombohedral ferroelectric films. I. Geometry and experiments. J. Appl. Phys. 83, 2742–2753 (1998).

    Article  CAS  Google Scholar 

  22. Li, Y. L., Hu, S. Y., Liu, Z. K. & Chen, L. Q. Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films. Acta Mater. 50, 395–411 (2002).

    Article  CAS  Google Scholar 

  23. Khachaturyan, A. G. Theory of Structural Transformations in Solids (John Wiley, 1983).

    Google Scholar 

  24. Zavaliche, F. et al. Polarization switching in epitaxial BiFeO3 films. Appl. Phys. Lett. 87, 252902 (2005).

    Article  Google Scholar 

  25. Paruch, P., Tybell, T. & Triscone, J. M. Nanoscale control of ferroelectric polarization and domain size in epitaxial Pb(Zr0.2Ti0.8)O3 thin films. Appl. Phys. Lett. 79, 530–532 (2001).

    Article  CAS  Google Scholar 

  26. Kalinin, S. V. et al. Intrinsic single-domain switching in ferroelectric materials on a nearly ideal surface. Proc. Natl Acad. Sci. USA 104, 20204–20209 (2007).

    Article  CAS  Google Scholar 

  27. Daniels, J. E. et al. Neutron diffraction study of the polarization reversal mechanism in [111]c-oriented Pb(Zn1/3Nb2/3)O3−xPbTiO3 . J. Appl. Phys. 101, 104108 (2007).

    Article  Google Scholar 

  28. Ruzmetov, D. et al. Epitaxial magnetic perovskite nanostructures. Adv. Mater. 17, 2869–2872 (2005).

    Article  CAS  Google Scholar 

  29. You, C. C. et al. The fabrication and characterization of PbTiO3 nanomesas realized on nanostructured SrRuO3/SrTiO3 templates. Nanotechnology 20, 255705 (2009).

    Article  CAS  Google Scholar 

  30. Bai, F. et al. Destruction of spin cycloid in (111)c-oriented BiFeO3 thin films by epitaxial constraint: Enhanced polarization and release of latent magnetization. Appl. Phys. Lett. 86, 032511 (2005).

    Article  Google Scholar 

Download references


The authors gratefully acknowledge the financial support of the National Science Foundation through grant ECCS-0708759, the Office of Naval Research through grant N00014-07-1-0215 and a David and Lucile Packard Fellowship (C.B.E.). The theoretical analyses and phase-field simulations at Penn State were supported by DOE Basic Sciences under grant number DE-FG02-07ER46417 (L.Q.C.) and NSF MRSEC on Nanosciences under grant number NSF DMR-0820404 (Y.L.L. and B.W.). The work at the University of Michigan was supported by DOE Basic Sciences under grant number DE-FG02-07ER46416 (X.Q.P.). The work at Berkeley is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division of the US Department of Energy under contract No. DE-AC02-05CH1123. The authors thank T. Tybell for helpful discussions.

Author information

Authors and Affiliations



S.H.B. fabricated samples and prepared the manuscript. H.W.J. and C.M.F. analysed the symmetry of BiFeO3 by XRD. Y.L.L. and B.W. carried out phase-field simulations. J.X.Z., Q.H. and Y.H.C. carried out high-field PFM measurements. C.T.N. and X.Q.P. carried out TEM measurements. C.B.E., R.R., L.Q.C., M.S.R. and X.Q.P. supervised the experiments and contributed to manuscript preparation. C.B.E. designed and directed the research. All authors discussed the results and implications and commented on the manuscript at all stages.

Corresponding author

Correspondence to C. B. Eom.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 660 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Baek, S., Jang, H., Folkman, C. et al. Ferroelastic switching for nanoscale non-volatile magnetoelectric devices. Nature Mater 9, 309–314 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing