Plasmonics for improved photovoltaic devices

  • A Corrigendum to this article was published on 23 September 2010

Abstract

The emerging field of plasmonics has yielded methods for guiding and localizing light at the nanoscale, well below the scale of the wavelength of light in free space. Now plasmonics researchers are turning their attention to photovoltaics, where design approaches based on plasmonics can be used to improve absorption in photovoltaic devices, permitting a considerable reduction in the physical thickness of solar photovoltaic absorber layers, and yielding new options for solar-cell design. In this review, we survey recent advances at the intersection of plasmonics and photovoltaics and offer an outlook on the future of solar cells based on these principles.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Optical absorption and carrier diffusion requirements in a solar cell.
Figure 2: Plasmonic light-trapping geometries for thin-film solar cells.
Figure 3: Light scattering and trapping is very sensitive to particle shape.
Figure 4: Characteristics of surface plasmons.
Figure 5: Light scattering into SPP and photonic modes in thin semiconductor films.
Figure 6: New plasmonic solar-cell designs.
Figure 7: Large-area metal nanopatterns for plasmonic solar cells.

Change history

  • 01 September 2010

    In Fig. 1a of the version of this Review originally published, the graph labelled '2-μm-thick Si wafer' is that for a 10-μm-thick wafer. The original figure caption and descriptions in the text are correct. The figure has been corrected in the HTML and PDF versions of this Review.

References

  1. 1

    Green, M. A. Solar Cells: Operating Principles, Technology and System Applications (Univ. New South Wales, 1998).

    Google Scholar 

  2. 2

    Yablonovitch, E. & Cody, G. D. Intensity enhancement in textured optical sheets for solar cells. IEEE Trans. Electr. Dev. 29, 300–305 (1982).

    Google Scholar 

  3. 3

    Deckman, H. W., Roxlo, C. B. & Yablonovitch, E. Maximum statistical increase of optical absorption in textured semiconductor films. Opt. Lett. 8, 491–493 (1983).

    CAS  Google Scholar 

  4. 4

    Polman, A. Plasmonics applied. Science 322, 868 (2008).

    Google Scholar 

  5. 5

    Andrew, P. & Barnes, W. L. Energy transfer across a metal film mediated by surface plasmon polaritons. Science 306, 1002–1005 (2004).

    CAS  Google Scholar 

  6. 6

    Mertens, H., Biteen, J. S., Atwater, H. A. & Polman, A. Polarization-selective plasmon-enhanced Si quantum dot luminescence. Nano Lett. 6, 2622–2625 (2006).

    CAS  Google Scholar 

  7. 7

    Kühn, S., Hakanson, U., Rogobete, L. & Sandoghdar, V. Enhancement of single molecule fluorescence using a gold nanoparticle as an optical nano-antenna. Phys. Rev. Lett. 97, 017402 (2006).

    Article  Google Scholar 

  8. 8

    Stockman, M. I. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 93, 137404 (2004).

    Google Scholar 

  9. 9

    Verhagen, E., Spasenović, M., Polman, A. & Kuipers, L. Nanowire plasmon excitation by adiabatic mode transformation. Phys. Rev. Lett. 102, 203904 (2008).

    Google Scholar 

  10. 10

    Prodan, E., Radloff, C., Halas, N. J. & Nordlander, P. A hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003).

    CAS  Google Scholar 

  11. 11

    Quinten, M., Leitner, A., Krenn, J. R. & Aussenegg, F. R. Electromagnetic energy transport via linear chains of silver nanoparticles. Opt. Lett. 23, 1331–1333 (1998).

    CAS  Google Scholar 

  12. 12

    Maier, S. A. et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nature Mater. 2, 229–232 (2003).

    CAS  Google Scholar 

  13. 13

    Koenderink, A. F. & Polman, A. Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains. Phys. Rev. B 74, 033402 (2006).

    Google Scholar 

  14. 14

    Zia, R., Selker, M. D., Catrysse, P. B. & Brongersma, M. L. Geometries and materials for subwavelength surface plasmon modes. J. Opt. Soc. Am. A 21, 2442–2446 (2004).

    Google Scholar 

  15. 15

    Mühlschlegel, P., Eisler, H. J., Martin, O. J. F., Hecht, B. & Pohl, D. W. Resonant optical antennas. Science 308, 1607–1609 (2005).

    Google Scholar 

  16. 16

    Ditlbacher, H., Krenn, J. R., Schider, G., Leitner, A. & Aussenegg, F. R. Two-dimensional optics with surface plasmon polaritons. Appl. Phys. Lett. 81, 1762–1764 (2002).

    CAS  Google Scholar 

  17. 17

    Bozhevolnyi, S. I., Volkov, V. S., Devaux, E., Laluet, J. Y. & Ebbesen, T. W. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508–511 (2006).

    CAS  Google Scholar 

  18. 18

    Krasavin, A. V. & Zheludev, N. I. Active plasmonics: Controlling signals in Au/Ga waveguide using nanoscale structural transformations. Appl. Phys. Lett. 84, 1416–1418 (2004).

    CAS  Google Scholar 

  19. 19

    Colombelli, R. et al. Quantum cascade surface-emitting photonic crystal laser. Science 302, 1374–1377 (2003).

    CAS  Google Scholar 

  20. 20

    Hill, M. T. et al. Lasing in metallic-coated nanocavities. Nature Photon. 1, 589–594 (2007).

    CAS  Google Scholar 

  21. 21

    Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).

    CAS  Google Scholar 

  22. 22

    Okamoto, K. et al. Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nature Mater. 3, 601–605 (2004).

    CAS  Google Scholar 

  23. 23

    Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3968 (2000).

    CAS  Google Scholar 

  24. 24

    Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a negative index of refraction. Science 292, 77–79 (2001).

    CAS  Google Scholar 

  25. 25

    Linden, S. et al. Magnetic response of metamaterials at 100 terahertz. Science 306, 1351–1353 (2004).

    CAS  Google Scholar 

  26. 26

    Fang, N., Lee, H., Sun, C. & Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005).

    CAS  Google Scholar 

  27. 27

    Kreibig, U. & Vollmer, M. Optical Properties of Metal Clusters (Springer, 1995).

    Google Scholar 

  28. 28

    Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles (Wiley, 2008).

    Google Scholar 

  29. 29

    Mertz, J. Radiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: a unified description. J. Opt. Soc. Am. B 17, 1906–1913 (2000).

    CAS  Google Scholar 

  30. 30

    Stuart, H. R. & Hall, D. G. Absorption enhancement in silicon-on-insulator waveguides using metal island films. Appl. Phys. Lett. 69, 2327–2329 (1996).

    CAS  Google Scholar 

  31. 31

    Stuart, H. R. & Hall, D. G. Island size effects in nanoparticle-enhanced photodetectors. Appl. Phys. Lett. 73, 3815–3817 (1998).

    CAS  Google Scholar 

  32. 32

    Schaadt, D. M., Feng, B. & Yu, E. T. Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl. Phys. Lett. 86, 063106 (2005).

    Google Scholar 

  33. 33

    Derkacs, D., Lim, S. H., Matheu, P., Mar, W. & Yu, E. T. Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles. Appl. Phys. Lett. 89, 093103 (2006).

    Google Scholar 

  34. 34

    Matheu, P., Lim, S. H., Derkacs, D., McPheeters, C. & Yu, E. T. Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices. Appl. Phys. Lett. 93, 113108 (2008).

    Google Scholar 

  35. 35

    Pillai, S., Catchpole, K. R., Trupke, T. & Green, M. A. Surface plasmon enhanced silicon solar cells. J. Appl. Phys. 101, 093105 (2007).

    Google Scholar 

  36. 36

    Derkacs, D. et al. Nanoparticle-induced light scattering for improved performance of quantum-well solar cells. Appl. Phys. Lett. 93, 091107 (2008).

    Google Scholar 

  37. 37

    Nakayama, K., Tanabe, K. & Atwater, H. A. Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl. Phys. Lett. 93, 121904 (2008).

    Google Scholar 

  38. 38

    Catchpole, K. R. & Polman, A. Design principles for particle plasmon enhanced solar cells. Appl. Phys. Lett. 93, 191113 (2008).

    Google Scholar 

  39. 39

    Catchpole, K. R. & Polman, A. Plasmonic solar cells. Opt. Express 16, 21793–21800 (2008).

    CAS  Google Scholar 

  40. 40

    Xu, G., Tazawa, M., Jin, P., Nakao, S. & Yoshimura, K. Wavelength tuning of surface plasmon resonance using dielectric layers on silver island films. Appl. Phys. Lett. 82, 3811–3813 (2003).

    CAS  Google Scholar 

  41. 41

    Mertens, H., Verhoeven, J., Polman, A. & Tichelaar, F. D. Infrared surface plasmons in two-dimensional silver nanopartice arrays in silicon. Appl. Phys. Lett. 85, 1317–1319 (2004).

    CAS  Google Scholar 

  42. 42

    Beck, F. J., Polman, A. & Catchpole, K. R. Tunable light trapping for solar cells using localized surface plasmons. J. Appl. Phys. 105, 114310 (2009).

    Google Scholar 

  43. 43

    Lim, S. H., Mar, W., Matheu, P., Derkacs, D. & Yu, E. T. Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles. J. Appl. Phys. 101, 104309 (2007).

    Google Scholar 

  44. 44

    Beck, F. J., Mokkapati, S., Polman, A. & Catchpole, K. R. Asymmetry in light-trapping by plasmonic nanoparticle arrays located on the front or on the rear of solar cells. Appl. Phys. Lett. (in the press).

  45. 45

    Pala, R. A., White, J., Barnard, E., Liu, J. & Brongersma, M. L. Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv. Mater. 21, 3504–3509 (2009).

    CAS  Google Scholar 

  46. 46

    Mokkapati, S., Beck, F. J., Polman, A. & Catchpole, K. R. Designing periodic arrays of metal nanoparticles for light trapping applications in solar cells. Appl. Phys. Lett. 95, 53115 (2009).

    Google Scholar 

  47. 47

    Stuart, H. R. & Hall, D. G. Thermodynamic limit to light trapping in thin planar structures. J. Opt. Soc. Am. A 14, 3001–3008 (1997).

    CAS  Google Scholar 

  48. 48

    Stuart, H. R. & Hall, D. G. Enhanced dipole–dipole interaction between elementary radiators near a surface. Phys. Rev. Lett. 80, 5663–5668 (1998).

    CAS  Google Scholar 

  49. 49

    Catchpole, K. R. & Pillai, S. Absorption enhancement due to scattering by dipoles into silicon waveguides. J. Appl. Phys. 100, 044504 (2006).

    Google Scholar 

  50. 50

    Rand, B. P., Peumans, P. & Forrest, S. R. Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters. J. Appl. Phys. 96, 7519–7526 (2004).

    CAS  Google Scholar 

  51. 51

    Kim, S. S., Na, S.-I., Jo, J., Kim, D. Y. & Nah, Y.-C. Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles. Appl. Phys. Lett. 93, 073307 (2008).

    Google Scholar 

  52. 52

    Morfa, A. J., Rowlen, K. L., Reilly, T. H., Romero, M. J. & Van de Lagemaat, J. Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics. Appl. Phys. Lett. 92, 013504 (2008).

    Google Scholar 

  53. 53

    Lindquist, N. C., Luhman, W. A., Oh, S. H. & Holmes, R. J. Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells. Appl. Phys. Lett. 93, 123308 (2008).

    Google Scholar 

  54. 54

    Kume, T., Hayashi, S., Ohkuma, H., Yamamoto, K. Enhancement of photoelectric conversion efficiency in copper phthalocyanine solar cell: white light excitation of surface plasmon polaritons. Jpn. J. Appl. Phys. 34, 6448–6451 (1995).

    CAS  Google Scholar 

  55. 55

    Westphalen, M., Kreibig, U., Rostalski, J., Lüth, H. & Meissner, D. Metal cluster enhanced organic solar cells. Sol. Energy Mater. Sol. C. 61, 97–105 (2000).

    CAS  Google Scholar 

  56. 56

    Hägglund, C., Zäch, M. & Kasemo, B. Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons. Appl. Phys. Lett. 92, 013113 (2008).

    Google Scholar 

  57. 57

    Konda, R. B. et al. Surface plasmon excitation via Au nanoparticles in n-CdSe/p-Si heterojunction diodes. Appl. Phys. Lett. 91, 191111 (2007).

    Google Scholar 

  58. 58

    Hägglund, C., Zäch, M., Petersson, G. & Kasemo, B. Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons. Appl. Phys. Lett. 92, 053110 (2008).

    Google Scholar 

  59. 59

    Kirkengena, M., Bergli, J. & Galperin, Y. M. Direct generation of charge carriers in c-Si solar cells due to embedded nanoparticles. J. Appl. Phys. 1 02, 093713 (2007).

    Google Scholar 

  60. 60

    Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. (Springer Tracts in Modern Physics III, Springer, 1988).

    Google Scholar 

  61. 61

    Berini, P. Plasmon–polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures. Phys. Rev. B 61, 10484–10503 (2000).

    CAS  Google Scholar 

  62. 62

    Berini, P. Plasmon–polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures. Phys. Rev. B 63, 125417 (2001).

    Google Scholar 

  63. 63

    Dionne, J. A., Sweatlock, L., Atwater, H. A. & Polman, A. Planar plasmon metal waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model. Phys. Rev. B 72, 075405 (2005).

    Google Scholar 

  64. 64

    Dionne, J. A., Sweatlock, L., Atwater, H. A. & Polman, A. Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization. Phys. Rev. B 73, 035407 (2006).

    Google Scholar 

  65. 65

    Slooff, L. H. et al. Determining the internal quantum efficiency of highly efficient polymer solar cells through optical modeling. Appl. Phys. Lett. 90, 143506 (2007).

    Google Scholar 

  66. 66

    Ferry, V. E., Sweatlock, L. A., Pacifici, D. & Atwater, H. A. Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett. 8, 4391–4397 (2008).

    CAS  Google Scholar 

  67. 67

    Ferry, V. et al. Improved red-response in thin film a-Si:H solar cells with nanostructured plasmonic back reflectors. Appl. Phys. Lett. 95, 183503 (2009).

    Google Scholar 

  68. 68

    Giannini, V., Zhang, Y., Forcales, M. & Gómez Rivas, J. Long-range surface plasmon polaritons in ultra-thin films of silicon. Opt. Express 16, 19674–19685 (2008).

    CAS  Google Scholar 

  69. 69

    Mapel, J. K., Singh, M., Baldo, M. A. & Celebi, K. Plasmonic excitation of organic double heterostructure solar cells. Appl. Phys. Lett. 90, 121102 (2007).

    Google Scholar 

  70. 70

    Tvingstedt, K., Persson, N. K., Ingan, O., Rahachou, A. & Zozoulenko, I. V. Surface plasmon increase absorption in polymer photovoltaic cells. Appl. Phys. Lett. 91, 113514 (2007).

    Google Scholar 

  71. 71

    Heidel, T. D., Mapel, J. K., Singh, M., Celebi, K. & Baldo, M. A. Surface plasmon polariton mediated energy transfer in organic photovoltaic devices. Appl. Phys. Lett. 91, 093506 (2007).

    Google Scholar 

  72. 72

    Haug, F. J., Söderström, T., Cubero, O., Terrazzoni-Daudrix, V. & Ballif, C. Plasmonic absorption in textured silver back reflectors of thin film solar cells. J. Appl. Phys. 104, 064509 (2008).

    Google Scholar 

  73. 73

    Tvingstedt, K., Person, N. K., Inganäs, O., Rahachou, A. & Zozoulenko, I. V. Surface plasmon increase absorption in polymer photovoltaic cells. Appl. Phys. Lett. 91, 113514 (2007).

    Google Scholar 

  74. 74

    Franken, R. H. et al. Understanding light trapping by light-scattering textured back electrodes in thin-film n–i–p silicon solar cells. J. Appl. Phys. 1 02, 014503 (2007).

    Google Scholar 

  75. 75

    Schropp, R. E. I. et al. Nanostructured thin films for multibandgap silicon triple junction solar cells. Sol. Energy Mater. Sol. C. 93, 1129–1133 (2009).

    CAS  Google Scholar 

  76. 76

    Rockstuhl, C., Fahr, S. & Lederer, F. Absorption enhancement in solar cells by localized plasmon polaritons. J. Appl. Phys. 104, 123102 (2008).

    Google Scholar 

  77. 77

    Keevers, M. J., Young, T. L., Schubert, U. & Green, M. A. 10% efficient CSG minimodules. Proc. 22nd Eur. Photovoltaic Solar Energy Conf. Milan, Italy, 3–7 September 2007.

  78. 78

    Green, M. A., Zhao, J., Wang, A. & Wenham, S. R. Very high efficiency silicon solar cells: science and technology. IEEE Trans. Electr. Dev. 46, 1940–1947 (1999).

    CAS  Google Scholar 

  79. 79

    Fahr, S., Rockstuhl, C. & Lederer, F. Metallic nanoparticles as intermediate reflectors in tandem solar cells. Appl. Phys. Lett. 95, 121105 (2009).

    Google Scholar 

  80. 80

    Pacifici, D., Lezec, H. & Atwater, H. A. All-optical modulation by plasmonic excitation of CdSe quantum dots. Nature Photon. 1, 402–406 (2007).

    CAS  Google Scholar 

  81. 81

    Walters, R. J., van Loon, R. V. A., Brunets, I., Schmitz, J. & Polman, A. A silicon-based electrical source of surface plasmon polaritons. Nature Mater. 9, 21–25 (2010).

    CAS  Google Scholar 

  82. 82

    Verhagen, E., Kuipers, L. & Polman, A. Field enhancement in metallic subwavelength aperture arrays probed by erbium upconversion luminescence. Opt. Express 17, 14586–14597 (2009).

    CAS  Google Scholar 

  83. 83

    O'Carroll, D., Hofmann, C. E. & Atwater, H. A. Conjugated polymer/metal nanowire heterostructure plasmonic antennas. Adv. Mater. 10.1002/adma.200902024 (2009).

  84. 84

    Labeke, D. V., Gerard, D., Guizal, B., Baida, F. I. & Li, L. An angle-independent frequency selective surface in the optical range. Opt. Express 14, 11945–11951 (2006).

    Google Scholar 

  85. 85

    De Waele, R., Burgos, S. P., Polman, A. & Atwater, H. A. Plasmon dispersion in coaxial waveguides from single-cavity optical transmission measurements. Nano Lett. 9, 2832–2837 (2009).

    CAS  Google Scholar 

  86. 86

    Kroekenstoel, E. J. A., Verhagen, E., Walters, R. J., Kuipers, L. & Polman, A. Enhanced spontaneous emission rate in annular plasmonic nanocavities. Appl. Phys. Lett. 95, 263106 (2009).

    Google Scholar 

  87. 87

    Pijpers, J. J. H. et al. Assessment of carrier-multiplication efficiency in bulk PbSe and PbS. Nature Phys. 5, 811–814 (2009).

    CAS  Google Scholar 

  88. 88

    King, R. R. et al. 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells. Appl. Phys. Lett. 90, 183516 (2007).

    Google Scholar 

  89. 89

    Coutts, T. J. et al. Critical issues in the design of polycrystalline, thin-film tandem solar cells. Prog. Photovolt. Res. Appl. 11, 359–375 (2003).

    Google Scholar 

  90. 90

    Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nature Mater. 9, 193–204 (2010).

    CAS  Google Scholar 

  91. 91

    Verschuuren, M. A. & van Sprang, H. A. 3D photonic structures by sol-gel imprint lithography. Mater. Res. Soc. Symp. Proc. 1002, 1002-N03-05 (2007).

    Google Scholar 

  92. 92

    Reilly, T., van de Lagemaat, J., Tenent, R. C., Morfa, A. J. & Rowlen, K. L. Surface-plasmon enhanced transparent electrodes in organic photovoltaics. Appl. Phys. Lett. 92, 243304 (2008).

    Google Scholar 

  93. 93

    US Geological Survey 2004 http://minerals.usgs.gov/minerals/pubs/mcs/.

  94. 94

    Green, M. A. Improved estimates for Te and Se availability from Cu anode slimes and recent price trends. Prog. Phot. 14, 743 (2006).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Bonn, K. Catchpole, V. E. Ferry, J. Gomez Rivas, M. Hebbink, J. N. Munday, P. Saeta, W. C. Sinke, R. E. I. Schropp, K. Tanabe, E. Verhagen, M. A. Verschuuren, R. de Waele and E. T. Yu for discussions. This work is supported by the Global Climate and Energy Project. The FOM portion of this work is part of the research programme of FOM and of the Joint Solar Panel programme, which are both financially supported by the Netherlands Organisation for Scientific Research (NWO). The Caltech portion of this work was supported by the Department of Energy under grant number DOE DE-FG02-07ER46405.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Harry A. Atwater or Albert Polman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Atwater, H., Polman, A. Plasmonics for improved photovoltaic devices. Nature Mater 9, 205–213 (2010). https://doi.org/10.1038/nmat2629

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing