Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Emerging applications of stimuli-responsive polymer materials

Subjects

Abstract

Responsive polymer materials can adapt to surrounding environments, regulate transport of ions and molecules, change wettability and adhesion of different species on external stimuli, or convert chemical and biochemical signals into optical, electrical, thermal and mechanical signals, and vice versa. These materials are playing an increasingly important part in a diverse range of applications, such as drug delivery, diagnostics, tissue engineering and 'smart' optical systems, as well as biosensors, microelectromechanical systems, coatings and textiles. We review recent advances and challenges in the developments towards applications of stimuli-responsive polymeric materials that are self-assembled from nanostructured building blocks. We also provide a critical outline of emerging developments.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: 'Galaxy' of nanostructured stimuli-responsive polymer materials.
Figure 2: Cartoons and photographs illustrating various architectures and responsive behaviour of polymers.
Figure 3: Responsive behaviour of functional polymeric networks.
Figure 4: Responsive properties of polyelectrolyte thin films and capsules prepared by the LbL method.
Figure 5: Hydrogen-sensitive LbL hydrogels.
Figure 6: Various configurational schematic designs of stimuli-responsive nanoparticles.
Figure 7: A gold electrode modified with a mercaptopropane sulphonate (MPS) self-assembled monolayer, with adsorbed redox polymer.
Figure 8: Molecular structure of a diblock copolymer brush observed by single-chain-in-mean-field simulations showing lateral phase separation.

References

  1. 1

    Senaratne, W., Andruzzi, L. & Ober, C. K. Self-assembled monolayers and polymer brushes in biotechnology: Current applications and future perspectives. Biomacromolecules 6, 2427–2448 (2005).

    CAS  Google Scholar 

  2. 2

    Jhaveri, S. J. et al. Release of nerve growth factor from HEMA hydrogel-coated substrates and its effect on the differentiation of neural cells. Biomacromolecules 10, 174–183 (2009).

    CAS  Google Scholar 

  3. 3

    Hoffman, A. S. The origins and evolution of “controlled” drug delivery systems. J. Control. Release 132, 153–163 (2008).

    CAS  Google Scholar 

  4. 4

    Bayer, C. L. & Peppas, N. A. Advances in recognitive, conductive and responsive delivery systems. J. Control. Release 132, 216–221 (2008).

    CAS  Google Scholar 

  5. 5

    Mendes, P. M. Stimuli-responsive surfaces for bio-applications. Chem. Soc. Rev. 37, 2512–2529 (2008).

    CAS  Google Scholar 

  6. 6

    Luzinov, I., Minko, S. & Tsukruk, V. V. Responsive brush layers: from tailored gradients to reversibly assembled nanoparticles. Soft Matter 4, 714–725 (2008).

    CAS  Google Scholar 

  7. 7

    Motornov, M. et al. Reversible tuning of wetting behaviour of polymer surface with responsive polymer brushes. Langmuir 19, 8077–8085 (2003).

    CAS  Google Scholar 

  8. 8

    Liu, Z. S. & Calvert, P. Multilayer hydrogels as muscle-like actuators. Adv. Mater. 12, 288–291 (2000).

    CAS  Google Scholar 

  9. 9

    Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nature Mater. 7, 442–453 (2008).

    CAS  Google Scholar 

  10. 10

    Tokarev, I. & Minko, S. Stimuli-responsive hydrogel thin films. Soft Matter 5, 511–524 (2009).

    CAS  Google Scholar 

  11. 11

    Koberstein, J. T. Molecular design of functional polymer surfaces. J. Polym. Sci. Pol. Phys. 42, 2942–2956 (2004).

    CAS  Google Scholar 

  12. 12

    Carey, D. H., Grunzinger, S. J. & Ferguson, G. S. Entropically influenced reconstruction at the PBD-ox/water interface: The role of physical crosslinking and rubber elasticity. Macromolecules 33, 8802–8812 (2000).

    CAS  Google Scholar 

  13. 13

    Draper, J., Luzinov, I., Minko, S., Tokarev, I. & Stamm, M. Mixed polymer brushes by sequential polymer addition: Anchoring layer effect. Langmuir 20, 4064–4075 (2004).

    CAS  Google Scholar 

  14. 14

    Motornov, M. et al. Stimuli-responsive colloidal systems from mixed brush-coated nanoparticles. Adv. Funct. Mater. 17, 2307–2314 (2007).

    CAS  Google Scholar 

  15. 15

    Abu-Lail, N. I., Kaholek, M., LaMattina, B., Clark, R. L. & Zauscher, S. Micro-cantilevers with end-grafted stimulus-responsive polymer brushes for actuation and sensing. Sensor. Actuat. B-Chem. 114, 371–378 (2006).

    CAS  Google Scholar 

  16. 16

    Ayres, N., Cyrus, C. D. & Brittain, W. J. Stimuli-responsive surfaces using polyampholyte polymer brushes prepared via atom transfer radical polymerization. Langmuir 23, 3744–3749 (2007).

    CAS  Google Scholar 

  17. 17

    Azzaroni, O., Brown, A. A. & Huck, W. T. S. UCST wetting transitions of polyzwitterionic brushes driven by self-association. Angew. Chem. Int. Ed. 45, 1770–1774 (2006).

    CAS  Google Scholar 

  18. 18

    Santer, S., Kopyshev, A., Donges, J., Yang, H. K. & Ruhe, J. Dynamically reconfigurable polymer films: Impact on nanomotion. Adv. Mater. 18, 2359–2362 (2006).

    CAS  Google Scholar 

  19. 19

    Wu, T. et al. Behaviour of surface-anchored poly(acrylic acid) brushes with grafting density gradients on solid substrates: 1. Experiment. Macromolecules 40, 8756–8764 (2007).

    CAS  Google Scholar 

  20. 20

    Xu, C. et al. Effect of block length on solvent response of block copolymer brushes: Combinatorial study with block copolymer brush gradients. Macromolecules 39, 3359–3364 (2006).

    CAS  Google Scholar 

  21. 21

    Motornov, M., Sheparovych, R., Tokarev, I., Roiter, Y. & Minko, S. Nonwettable thin films from hybrid polymer brushes can be hydrophilic. Langmuir 23, 13–19 (2007).

    CAS  Google Scholar 

  22. 22

    Sheparovych, R., Motornov, M. & Minko, S. Adapting low-adhesive thin films from mixed polymer brushes. Langmuir 24, 13828–13832 (2008).

    CAS  Google Scholar 

  23. 23

    Sheparovych, R., Motornov, M. & Minko, S. Low adhesive surfaces which adapt changing surrounding environment. Adv. Mater. 21, 1840–1844 (2009).

    CAS  Google Scholar 

  24. 24

    Tanaka, T. & Fillmore, D. J. Kinetics of swelling of gels. J. Chem. Phys. 70, 1214–1218 (1979).

    CAS  Google Scholar 

  25. 25

    Toomey, R., Freidank, D. & Ruhe, J. Swelling behaviour of thin, surface-attached polymer networks. Macromolecules 37, 882–887 (2004).

    CAS  Google Scholar 

  26. 26

    Crowe-Willoughby, J. A. & Genzer, J. Formation and properties of responsive siloxane-based polymeric surfaces with tunable surface reconstruction kinetics. Adv. Funct. Mater. 19, 460–469 (2009).

    CAS  Google Scholar 

  27. 27

    Crowe, J. A. & Genzer, J. Creating responsive surfaces with tailored wettability switching kinetics and reconstruction reversibility. J. Am. Chem. Soc. 127, 17610–17611 (2005).

    CAS  Google Scholar 

  28. 28

    Tokarev, I., Orlov, M. & Minko, S. Responsive polyelectrolyte gel membranes. Adv. Mater. 18, 2458–2460 (2006).

    CAS  Google Scholar 

  29. 29

    Tokarev, I. & Minko, S. Multiresponsive hierarchically structured membranes: new challenging biomimetic materials for biosensors, controlled release, biochemical gates and nanoreactors. Adv. Mater. 21, 241–247 (2009).

    CAS  Google Scholar 

  30. 30

    Tokarev, I. et al. Stimuli-responsive hydrogel membranes coupled with biocatalytic processes. ACS Appl. Mater. Interfaces 3, 532–536 (2009).

    Google Scholar 

  31. 31

    Decher, G. Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science 277, 1232–1237 (1997).

    CAS  Google Scholar 

  32. 32

    Lvov, Y., Ariga, K., Ichinose, I. & Kunitake, T. Assembly of multicomponent protein films by means of electrostatic layer-by-layer adsorption. J. Am. Chem. Soc. 117, 6117–6123 (1995).

    CAS  Google Scholar 

  33. 33

    Decher, G. & Schlenoff, J. B. Multilayer Thin Films (Wiley-VCH, 2003).

    Google Scholar 

  34. 34

    Itano, K., Choi, J. Y. & Rubner, M. F. Mechanism of the pH-induced discontinuous swelling/deswelling transitions of poly(allylamine hydrochloride)-containing polyelectrolyte multilayer films. Macromolecules 38, 3450–3460 (2005).

    CAS  Google Scholar 

  35. 35

    Kharlampieva, E., Kozlovskaya, V., Tyutina, J. & Sukhishvili, S. A. Hydrogen-bonded multilayers of thermoresponsive polymers. Macromolecules 38, 10523–10531 (2005).

    CAS  Google Scholar 

  36. 36

    Hua, F., Cui, T. H. & Lvov, Y. M. Ultrathin cantilevers based on polymer-ceramic nanocomposite assembled through layer-by-layer adsorption. Nano Lett. 4, 823–825 (2004).

    CAS  Google Scholar 

  37. 37

    Mertz, D. et al. Mechanically responding nanovalves based on polyelectrolyte multilayers. Nano Lett. 7, 657–662 (2007).

    CAS  Google Scholar 

  38. 38

    Urban, M. W. Intelligent polymeric coatings; current and future advances. Polym. Rev. 46, 329–339 (2006).

    CAS  Google Scholar 

  39. 39

    Misra, A., Jarrett, W. L. & Urban, M. W. Fluoromethacrylate-containing colloidal dispersions: Phospholipid-assisted synthesis, particle morphology, and temperature-responsive stratification. Macromolecules 40, 6190–6198 (2007).

    CAS  Google Scholar 

  40. 40

    Motornov, M., Sheparovych, R., Lupitskyy, R., MacWilliams, E. & Minko, S. Superhydrophobic surfaces generated from water-borne dispersions of hierarchically assembled nanoparticles coated with a reversibly switchable shell. Adv. Mater. 20, 200–205 (2008).

    CAS  Google Scholar 

  41. 41

    Urban, M. W. Stratification, Stimuli-responsiveness, self-healing, and signalling in polymer networks. Prog. Polym. Sci. 34, 679–687 (2009).

    CAS  Google Scholar 

  42. 42

    Andreeva, D. V., Fix, D., Mohwald, H. & Shchukin, D. G. Self-healing anticorrosion coatings based on pH-sensitive polyelectrolyte/inhibitor sandwich-like nanostructures. Adv. Mater. 20, 2789–2794 (2008).

    CAS  Google Scholar 

  43. 43

    Bajpai, A. K., Shukla, S. K., Bhanu, S. & Kankane, S. Responsive polymers in controlled drug delivery. Prog. Polym. Sci. 33, 1088–1118 (2008).

    CAS  Google Scholar 

  44. 44

    Alexander, C. & Shakesheff, K. M. Responsive polymers at the biology/materials science interface. Adv. Mater. 18, 3321–3328 (2006).

    CAS  Google Scholar 

  45. 45

    Lutolf, M. P. et al. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: Engineering cell-invasion characteristics. Proc. Natl Acad. Sci. USA 100, 5413–5418 (2003).

    CAS  Google Scholar 

  46. 46

    Alarcon, C. D. H., Farhan, T., Osborne, V. L., Huck, W. T. S. & Alexander, C. Bioadhesion at micro-patterned stimuli-responsive polymer brushes. J. Mater. Chem. 15, 2089–2094 (2005).

    Google Scholar 

  47. 47

    Ionov, L., Houbenov, N., Sidorenko, A., Stamm, M. & Minko, S. Stimuli-responsive command polymer surface for generation of protein gradients. Biointerphases 4, FA45–FA49 (2009).

    CAS  Google Scholar 

  48. 48

    Hayashi, G., Hagihara, M., Dohno, C. & Nakatani, K. Photoregulation of a peptide-RNA interaction on a gold surface. J. Am. Chem. Soc. 129, 8678–8679 (2007).

    CAS  Google Scholar 

  49. 49

    Ebara, M. et al. Temperature-responsive cell culture surfaces enable “on-off” affinity control between cell integrins and RGDS ligands. Biomacromolecules 5, 505–510 (2004).

    CAS  Google Scholar 

  50. 50

    Lue, S. J., Hsu, J. J. & Wei, T. C. Drug permeation modeling through the thermo-sensitive membranes of poly(N-isopropylacrylamide) brushes grafted onto micro-porous films. J. Membrane Sci. 321, 146–154 (2008).

    CAS  Google Scholar 

  51. 51

    Motornov, M. et al. Switchable selectivity for gating ion transport with mixed polyelectrolyte brushes: approaching 'smart' drug delivery systems. Nanotechnology 20, 434006 (2009).

    Google Scholar 

  52. 52

    Wong, V. N. et al. Separation of peptides with polyionic nanosponges for MALDI-MS analysis. Langmuir 25, 1459–1465 (2009).

    CAS  Google Scholar 

  53. 53

    Nagase, K. et al. Effects of graft densities and chain lengths on separation of bioactive compounds by nanolayered thermoresponsive polymer brush surfaces. Langmuir 24, 511–517 (2008).

    CAS  Google Scholar 

  54. 54

    Edmondson, S., Frieda, K., Comrie, J. E., Onck, P. R. & Huck, W. T. S. Buckling in quasi-2D polymers. Adv. Mater. 18, 724–728 (2006).

    CAS  Google Scholar 

  55. 55

    Zhou, F., Shu, W. M., Welland, M. E. & Huck, W. T. S. Highly reversible and multi-stage cantilever actuation driven by polyelectrolyte brushes. J. Am. Chem. Soc. 128, 5326–5327 (2006).

    CAS  Google Scholar 

  56. 56

    Valiaev, A., Abu-Lail, N. I., Lim, D. W., Chilkoti, A. & Zauscher, S. Microcantilever sensing and actuation with end-grafted stimulus-responsive elastin-like polypeptides. Langmuir 23, 339–344 (2007).

    CAS  Google Scholar 

  57. 57

    Zhou, F. et al. Polyelectrolyte brush amplified electroactuation of microcantilevers. Nano Lett. 8, 725–730 (2008).

    Google Scholar 

  58. 58

    Singamaneni, S. et al. Bimaterial microcantilevers as a hybrid sensing platform. Adv. Mater. 20, 653–680 (2008).

    CAS  Google Scholar 

  59. 59

    Jonas, A. M., Hu, Z. J., Glinel, K. & Huck, W. T. S. Effect of nanoconfinement on the collapse transition of responsive polymer brushes. Nano Lett. 8, 3819–3824 (2008).

    CAS  Google Scholar 

  60. 60

    Lee, W. K., Patra, M., Linse, P. & Zauscher, S. Scaling behaviour of nanopatterned polymer brushes. Small 3, 63–66 (2007).

    CAS  Google Scholar 

  61. 61

    Raynor, J. E., Petrie, T. A., Garcia, A. J. & Collard, D. M. Controlling cell adhesion to titanium: Functionalization of poly[oligo(ethylene glycol)methacrylate] brushes with cell-adhesive peptides. Adv. Mater. 19, 1724–1728 (2007).

    CAS  Google Scholar 

  62. 62

    Howse, J. R. et al. Reciprocating power generation in a chemically driven synthetic muscle. Nano Lett. 6, 73–77 (2006).

    CAS  Google Scholar 

  63. 63

    Merlitz, H., He, G. L., Wu, C. X. & Sommer, J. U. Surface instabilities of monodisperse and densely grafted polymer brushes. Macromolecules 41, 5070–5072 (2008).

    CAS  Google Scholar 

  64. 64

    Tokareva, I., Minko, S., Fendler, J. H. & Hutter, E. Nanosensors based on responsive polymer brushes and gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy. J. Am. Chem. Soc. 126, 15950–15951 (2004).

    CAS  Google Scholar 

  65. 65

    Burg, T. P. et al. Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 446, 1066–1069 (2007).

    CAS  Google Scholar 

  66. 66

    Gupta, S. et al. Gold nanoparticles immobilized on stimuli responsive polymer brushes as nanosensors. Macromolecules 41, 8152–8158 (2008).

    CAS  Google Scholar 

  67. 67

    Kozlovskaya, V. et al. Ultrathin layer-by-layer hydrogels with incorporated gold nanorods as pH-sensitive optical materials. Chem. Mater. 20, 7474–7485 (2008).

    CAS  Google Scholar 

  68. 68

    Podsiadlo, P. et al. Exponential growth of LBL films with incorporated inorganic sheets. Nano Lett. 8, 1762–1770 (2008).

    CAS  Google Scholar 

  69. 69

    Jiang, G. Q., Baba, A. & Advincula, R. Nanopatterning and fabrication of memory devices from layer-by-layer poly(3,4-ethylenedioxythiophene)-poly(styrene sulphonate) ultrathin films. Langmuir 23, 817–825 (2007).

    CAS  Google Scholar 

  70. 70

    Mitamura, K., Imae, T., Tian, S. & Knoll, W. Surface plasmon fluorescence investigation of energy-transfer-controllable organic thin films. Langmuir 24, 2266–2270 (2008).

    CAS  Google Scholar 

  71. 71

    Hilt, J. Z., Gupta, A. K., Bashir, R. & Peppas, N. A. Ultrasensitive biomems sensors based on microcantilevers patterned with environmentally responsive hydrogels. Biomed. Microdevices 5, 177–184 (2003).

    CAS  Google Scholar 

  72. 72

    Mack, N. H. et al. Optical transduction of chemical forces. Nano Lett 7, 733–737 (2007).

    CAS  Google Scholar 

  73. 73

    Kang, J. H. et al. Thermoresponsive hydrogel photonic crystals by three-dimensional holographic lithography. Adv. Mater. 20, 3061–3065 (2008).

    CAS  Google Scholar 

  74. 74

    Ben-Moshe, M., Alexeev, V. L. & Asher, S. A. Fast responsive crystalline colloidal array photonic crystal glucose sensors. Anal. Chem. 78, 5149–5157 (2006).

    CAS  Google Scholar 

  75. 75

    Jiang, C. Y., Markutsya, S., Pikus, Y. & Tsukruk, V. V. Freely suspended nanocomposite membranes as highly sensitive sensors. Nature Mater. 3, 721–728 (2004).

    CAS  Google Scholar 

  76. 76

    Dong, L., Agarwal, A. K., Beebe, D. J. & Jiang, H. R. Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature 442, 551–554 (2006).

    CAS  Google Scholar 

  77. 77

    Hendrikson, G. R. & Lyon, L. A. Bioresponsive hydrogels for sensing application. Soft Matter 5, 29–35 (2009).

    Google Scholar 

  78. 78

    Sidorenko, A., Krupenkin, T., Taylor, A., Fratzl, P. & Aizenberg, J. Reversible switching of hydrogel-actuated nanostructures into complex micropatterns. Science 315, 487–490 (2007).

    CAS  Google Scholar 

  79. 79

    Kuksenok, O., Yashin, V. V. & Balazs, A. C. Mechanically induced chemical oscillations and motion in responsive gels. Soft Matter 3, 1138–1144 (2007).

    CAS  Google Scholar 

  80. 80

    Discher, D. E. et al. Emerging applications of polymersomes in delivery: From molecular dynamics to shrinkage of tumours. Prog. Polym. Sci. 32, 838–857 (2007).

    CAS  Google Scholar 

  81. 81

    Blanazs, A., Armes, S. P. & Ryan, A. J. Self-assembled block copolymer aggregates: From micelles to vesicles and their biological applications. Macromol. Rapid Comm. 30, 267–277 (2009).

    CAS  Google Scholar 

  82. 82

    Qi, L., Chapel, J. P., Castaing, J. C., Fresnais, J. & Berret, J. F. Organic versus hybrid coacervate complexes: co-assembly and adsorption properties. Soft Matter 4, 577–585 (2008).

    CAS  Google Scholar 

  83. 83

    Yan, Y. et al. Hierarchical self-assembly in solutions containing metal ions, ligand, and diblock copolymer. Angew. Chem. Int. Ed. 46, 1807–1809 (2007).

    CAS  Google Scholar 

  84. 84

    Voets, I. K. et al. Spontaneous symmetry breaking: formation of Janus micelles. Soft Matter 5, 999–1005 (2009).

    CAS  Google Scholar 

  85. 85

    Li, M. H. & Keller, P. Stimuli-responsive polymer vesicles. Soft Matter, 5, 927–937 (2009).

    CAS  Google Scholar 

  86. 86

    Chiu, H. C., Lin, Y. W., Huang, Y. F., Chuang, C. K. & Chern, C. S. Polymer vesicles containing small vesicles within interior aqueous compartments and pH-responsive transmembrane channels. Angew. Chem. Int. Ed. 47, 1875–1878 (2008).

    CAS  Google Scholar 

  87. 87

    Oh, J. K., Drumright, R., Siegwart, D. J. & Matyjaszewski, K. The development of microgels/nanogels for drug delivery applications. Prog. Polym. Sci. 33, 448–477 (2008).

    CAS  Google Scholar 

  88. 88

    Morimoto, N., Qiu, X. P., Winnik, F. M. & Akiyoshi, K. Dual stimuli-responsive nanogels by self-assembly of polysaccharides lightly grafted with thiol-terminated poly(N-isopropylacrylamide) chains. Macromolecules 41, 5985–5987 (2008).

    CAS  Google Scholar 

  89. 89

    Morimoto, N., Winnik, F. M. & Akiyoshi, K. Botryoidal assembly of cholesteryl-pullulan/poly(N-isopropylacrylamide) nanogels. Langmuir 23, 217–223 (2007).

    CAS  Google Scholar 

  90. 90

    Motornov, M. et al. “Chemical transformers” from nanoparticle ensembles operated with logic. Nano Lett. 8, 2993–2997 (2008).

    CAS  Google Scholar 

  91. 91

    Donath, E., Sukhorukov, G. B., Caruso, F., Davis, S. A. & Möhwald, H. Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angew. Chem. Int. Ed. 37, 2202–2205 (1998).

    CAS  Google Scholar 

  92. 92

    Zelikin, A. N., Li, Q. & Caruso, F. Disulphide-stabilized poly(methacrylic acid) capsules: Formation, crosslinking, and degradation behaviour. Chem. Mater. 20, 2655–2661 (2008).

    CAS  Google Scholar 

  93. 93

    Levy, T., Dejugnat, C. & Sukhorukov, G. B. Polymer microcapsules with carbohydrate-sensitive properties. Adv. Funct. Mater. 18, 1586–1594 (2008).

    CAS  Google Scholar 

  94. 94

    Kozlovskaya, V., Kharlampieva, E., Mansfield, M. L. & Sukhishvili, S. A. Poly(methacrylic acid) hydrogel films and capsules: Response to pH and ionic strength, and encapsulation of macromolecules. Chem. Mater. 18, 328–336 (2006).

    CAS  Google Scholar 

  95. 95

    Edwards, E. W., Chanana, M., Wang, D. & Möhwald, H. Stimuli-responsive reversible transport of nanoparticles across water/oil interfaces. Angew. Chem. Int. Ed. 47, 320–323 (2008).

    CAS  Google Scholar 

  96. 96

    Binks, B. P., Murakami, R., Armes, S. P. & Fujii, S. Temperature-induced inversion of nanoparticle-stabilized emulsions. Angew. Chem. Int. Ed. 44, 4795–4798 (2005).

    CAS  Google Scholar 

  97. 97

    Binks, B. P. & Murakami, R. Phase inversion of particle-stabilized materials from foams to dry water. Nature Mater. 5, 865–869 (2006).

    CAS  Google Scholar 

  98. 98

    Lu, Y., Mei, Y., Drechsler, M. & Ballauff, M. Thermosensitive core-shell particles as carriers for Ag nanoparticles: Modulating the catalytic activity by a phase transition in networks. Angew. Chem. Int. Ed. 45, 813–816 (2006).

    CAS  Google Scholar 

  99. 99

    Lu, Y. et al. Thermosensitive core-shell microgel as a “nanoreactor” for catalytic active metal nanoparticles. J. Mater. Chem. 19, 3955–3961 (2009).

    CAS  Google Scholar 

  100. 100

    Skirtach, A. G. et al. Laser-induced release of encapsulated materials inside living cells. Angew. Chem. Int. Ed. 45, 4612–4617 (2006).

    CAS  Google Scholar 

  101. 101

    Kreft, O., Javier, A. M., Sukhorukov, G. B. & Parak, W. J. Polymer microcapsules as mobile local pH-sensors. J. Mater. Chem. 17, 4471–4476 (2007).

    CAS  Google Scholar 

  102. 102

    Gillies, E. R., Jonsson, T. B. & Frechet, J. M. J. Stimuli-responsive supramolecular assemblies of linear-dendritic copolymers. J. Am. Chem. Soc. 126, 11936–11943 (2004).

    CAS  Google Scholar 

  103. 103

    Laugel, N. et al. Relationship between the growth regime of polyelectrolyte multilayers and the polyanion/polycation complexation enthalpy. J. Phys. Chem. B 110, 19443–19449 (2006).

    CAS  Google Scholar 

  104. 104

    Kakizawa, Y. & Kataoka, K. Block copolymer micelles for delivery of gene and related compounds. Adv. Drug Deliver. Rev. 54, 203–222 (2002).

    CAS  Google Scholar 

  105. 105

    Oishi, M., Hayashi, H., Michihiro, I. D. & Nagasaki, Y. Endosomal release and intracellular delivery of anticancer drugs using pH-sensitive PEGylated nanogels. J. Mater. Chem. 17, 3720–3725 (2007).

    CAS  Google Scholar 

  106. 106

    Lee, E. S., Kim, D., Youn, Y. S., Oh, K. T. & Bae, Y. H. A virus-mimetic nanogel vehicle. Angew. Chem. Int. Ed. 47, 2418–2421 (2008).

    CAS  Google Scholar 

  107. 107

    Zhulina, E. B., Singh, C. & Balazs, A. C. Forming patterned films with tethered diblock copolymers. Macromolecules 29, 6338–6348 (1996).

    CAS  Google Scholar 

  108. 108

    Roan, J. R. Soft nanopolyhedra as a route to multivalent nanoparticles. Phys. Rev. Lett. 96, 248301 (2006).

    Google Scholar 

  109. 109

    Müller, M. Phase diagram of a mixed polymer brush. Phys. Rev. E 65, 30802 (2002).

    Google Scholar 

  110. 110

    Wenning, L., Müller, M. & Binder, K. How does the pattern of grafting points influence the structure of one-component and mixed polymer brushes? Europhys. Lett. 71, 639–645 (2005).

    CAS  Google Scholar 

  111. 111

    Yin, Y. H. et al. A simulated annealing study of diblock copolymer brushes in selective solvents. Macromolecules 40, 5161–5170 (2007).

    CAS  Google Scholar 

  112. 112

    Matsen, M. W. The standard Gaussian model for block copolymer melts. J. Phys. Condens. Matter. 14, R21–R47 (2002).

    CAS  Google Scholar 

  113. 113

    Müller-Plathe, F. Coarse-graining in polymer simulation: From the atomistic to the mesoscopic scale and back. Chemphyschem 3, 754–769 (2002).

    Google Scholar 

  114. 114

    Praprotnik, M., Delle Site, L. & Kremer, K. Multiscale simulation of soft matter: From scale bridging to adaptive resolution. Annu. Rev. Phys. Chem. 59, 545–571 (2008).

    CAS  Google Scholar 

  115. 115

    Merlitz, H., He, G. L., Sommer, J. U. & Wu, C. H. Reversibly switchable polymer brushes with hydrophobic/hydrophilic behaviour: A Langevin dynamics study. Macromolecules 42, 445–451 (2009).

    CAS  Google Scholar 

  116. 116

    Fang, F. & Szleifer, I. Controlled release of proteins from polymer-modified surfaces. Proc. Natl Acad. Sci. USA 103, 5769–5774 (2006).

    CAS  Google Scholar 

  117. 117

    Szleifer, I. & Carignano, M. A. Tethered polymer layers: phase transitions and reduction of protein adsorption. Macromol. Rapid Comm. 21, 423–448 (2000).

    CAS  Google Scholar 

  118. 118

    Israels, R., Leermakers, F. A. M. & Fleer, G. J. On the theory of grafted weak polyacids. Macromolecules 27, 3087–3093 (1994).

    CAS  Google Scholar 

  119. 119

    Ye, Y., McCoy, J. D. & Curro, J. G. Application of density functional theory to tethered polymer chains: Effect of intermolecular attractions. J. Chem. Phys. 119, 555–564 (2003).

    CAS  Google Scholar 

  120. 120

    Ren, C. L., Nap, R. J. & Szleifer, I. The role of hydrogen bonding in tethered polymer layers. J. Phys. Chem. B 112, 16238–16248 (2008).

    CAS  Google Scholar 

  121. 121

    Zhulina, E. B. & Leermakers, F. A. M. A self-consistent field analysis of the neurofilament brush with amino-acid resolution. Biophys. J. 93, 1421–1430 (2007).

    CAS  Google Scholar 

  122. 122

    Tagliazucchi, M., Calvo, E. J. & Szleifer, I. Molecular theory of chemically modified electrodes by redox polyelectrolytes under equilibrium conditions: Comparison with experiment. J. Phys. Chem. C 112, 458–471 (2008).

    CAS  Google Scholar 

  123. 123

    Tagliazucchi, M., Calvo, E. J. & Szleifer, I. Redox and acid base coupling in ultrathin polyelectrolyte films. Langmuir 24, 2869–2877 (2008).

    CAS  Google Scholar 

  124. 124

    Mendez, S., Curro, J. G., McCoy, J. D. & Lopez, G. P. Computational modeling of the temperature-induced structural changes of tethered poly(N-isopropylacrylamide) with self-consistent field theory. Macromolecules 38, 174–181 (2005).

    CAS  Google Scholar 

  125. 125

    Wang, Q. Internal structure and charge compensation of polyelectrolyte multilayers: a numerical study. Soft Matter 5, 413–424 (2009).

    CAS  Google Scholar 

  126. 126

    Pattanayek, S. K. & Pereira, G. G. Shape of micelles formed from strongly adsorbed grafted polymers in poor solvents. Macromol. Theor. Simul. 14, 347–357 (2005).

    CAS  Google Scholar 

  127. 127

    Netz, R. R. & Andelman, D. Neutral and charged polymers at interfaces. Phys. Rep. 380, 1–95 (2003).

    CAS  Google Scholar 

  128. 128

    Wang, J. & Müller, M. Microphase separation of diblock copolymer brushes in selective solvents: Single-chain-in-mean-field simulations and integral geometry analysis. Macromolecules 42, 2251–2264 (2009).

    CAS  Google Scholar 

  129. 129

    Groot, R. D. & Warren, P. B. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 107, 4423–4435 (1997).

    CAS  Google Scholar 

  130. 130

    Daoulas, K. Ch. & Müller, M. Comparison of simulations of lipid membranes with membranes of block copolymers. Adv. Polym. Sci. 224, 197–233 (2009).

    Google Scholar 

  131. 131

    Santer, S. et al. Memory of surface patterns in mixed polymer brushes: Simulation and experiment. Langmuir 23, 279–285 (2007).

    CAS  Google Scholar 

  132. 132

    Santer, S., Kopyshev, A., Donges, J., Yang, H. K. & Rühe, J. Domain memory of mixed polymer brushes. Langmuir 22, 4660–4667 (2006).

    CAS  Google Scholar 

  133. 133

    Tam, T. K., Ornatska, M., Pita, M., Minko, S. & Katz, E. Polymer brush-modified electrode with switchable and tunable redox activity for bioelectronic applications. J. Phys. Chem. C 112, 8438–8445 (2008).

    CAS  Google Scholar 

  134. 134

    Motornov, M. et al. Integrated multifunctional nanosystem from command nanoparticles and enzymes. Small 5, 817–820 (2009).

    CAS  Google Scholar 

  135. 135

    Maye, M. M., Nykypanchuk, Cuisinier, M., van der Lelie, D. & Gang, O. Nature Mater. 8, 388–391 (2009).

    CAS  Google Scholar 

  136. 136

    Ghosh, B. & Urban, M. W. Self-repairing oxetane-substituted chitosan polyurethane networks. Science 323, 1458–1460 (2009).

    CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by National Science Foundation (grants DMR-0706209, DMR-0602528, DMR-0518785, DMR-0756273; CBET-0756461, CBET-0650705, CBET-0756457, CBET-0756461, CBET-0828046, CBET-0946615, CMMI-0825832, CMMI-0826067 and CMMI-0825773), US ARO (W911NF-05-1-0339), AFOSR-FA9550-08-1-0446 and the US Department of Energy (DE-SC52-06NA27341 and DE-FG02-09ER46604) and the Deutsche Forschungsgemeinschaft (Mu 1674/4).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Igor Luzinov or Sergiy Minko.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stuart, M., Huck, W., Genzer, J. et al. Emerging applications of stimuli-responsive polymer materials. Nature Mater 9, 101–113 (2010). https://doi.org/10.1038/nmat2614

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing