Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors

Abstract

Capacitive energy storage is distinguished from other types of electrochemical energy storage by short charging times and the ability to deliver significantly more power than batteries. A key limitation to this technology is its low energy density and for this reason there is considerable interest in exploring pseudocapacitive materials where faradaic mechanisms offer increased levels of energy storage. Here we show that the capacitive charge-storage properties of mesoporous films of iso-oriented α-MoO3 are superior to those of either mesoporous amorphous material or non-porous crystalline MoO3. Whereas both crystalline and amorphous mesoporous materials show redox pseudocapacitance, the iso-oriented layered crystalline domains enable lithium ions to be inserted into the van der Waals gaps of the α-MoO3. We propose that this extra contribution arises from an intercalation pseudocapacitance, which occurs on the same timescale as redox pseudocapacitance. The result is increased charge-storage capacity without compromising charge/discharge kinetics in mesoporous crystalline MoO3.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Morphology of mesoporous α-MoO3 with highly oriented crystalline walls.
Figure 2: Structure and chemical characterization of mesoporous α-MoO3 films.
Figure 3: Electrochemical characterization of sol–gel derived MoO3 films.
Figure 4: Capacitive and diffusion-controlled contributions to charge storage.

References

  1. Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    Article  CAS  Google Scholar 

  2. Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4301 (2004).

    Article  CAS  Google Scholar 

  3. Conway, B. E. Electrochemical Supercapacitors (Kluwer–Academic, 1999).

    Book  Google Scholar 

  4. Winter, M. & Brodd, R. J. What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104, 4245–4269 (2004).

    Article  CAS  Google Scholar 

  5. Arico, A. S. et al. Nanostructured materials for advanced energy conversion and storage devices. Nature Mater. 4, 366–377 (2005).

    Article  CAS  Google Scholar 

  6. Conway, B. E. Transition from supercapacitor to battery behavior in electrochemical energy storage. J. Electrochem. Soc. 138, 1539–1548 (1991).

    Article  CAS  Google Scholar 

  7. Conway, B. E., Birss, V. & Wojtowicz, J. The role and utilization of pseudocapacitance for energy storage by supercapacitors. J. Power Sources 66, 1–14 (1997).

    Article  CAS  Google Scholar 

  8. Miller, J. R. & Simon, P. Electrochemical capacitors for energy management. Science 321, 651–652 (2008).

    Article  CAS  Google Scholar 

  9. Conway, B. E. 2-dimensional and quasi-2-dimensional isotherms for Li intercalation and UPD processes at surfaces. Electrochim. Acta 38, 1249–1258 (1993).

    Article  CAS  Google Scholar 

  10. Jamnik, J. & Maier, J. Nanocrystallinity effects in lithium battery materials—aspects of nano-ionics. Part IV. Phys. Chem. Chem. Phys. 5, 5215–5220 (2003).

    Article  CAS  Google Scholar 

  11. Balaya, P. et al. Nano-ionics in the context of lithium batteries. J. Power Sources 159, 171–178 (2006).

    Article  CAS  Google Scholar 

  12. Wang, J., Polleux, J., Lim, J. & Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 111, 14925–14931 (2007).

    Article  CAS  Google Scholar 

  13. Zukalova, M. et al. Pseudocapacitive lithium storage in TiO2(B). Chem. Mater. 17, 1248–1255 (2005).

    Article  CAS  Google Scholar 

  14. Li, J. R., Tang, Z. L. & Zhang, Z. T. Pseudocapacitive characteristic of lithium ion storage in hydrogen titanate nanotubes. Chem. Phys. Lett. 418, 506–510 (2006).

    Article  CAS  Google Scholar 

  15. Brezesinski, T. et al. Templated nanocrystal-based porous TiO2 films for next-generation electrochemical capacitors. J. Am. Chem. Soc. 131, 1802–1809 (2009).

    Article  CAS  Google Scholar 

  16. Brinker, C. J., Lu, Y. F., Sellinger, A. & Fan, H. Y. Evaporation-induced self-assembly: Nanostructures made easy. Adv. Mater. 11, 579–585 (1999).

    Article  CAS  Google Scholar 

  17. Richman, E., Brezesinski, T. & Tolbert, S. H. Vertically oriented hexagonal mesoporous films formed through nanometre-scale epitaxy. Nature Mater. 7, 712–717 (2008).

    Article  CAS  Google Scholar 

  18. Goltner, C. G. & Antonietti, M. Mesoporous materials by templating of liquid crystalline phases. Adv. Mater. 9, 431–436 (1997).

    Article  CAS  Google Scholar 

  19. Zhao, D. Y. et al. Triblock copolymer syntheses of mesoporous silica with periodic 50–300 angstrom pores. Science 279, 548–552 (1998).

    Article  CAS  Google Scholar 

  20. Brezesinski, T. et al. Evaporation-induced self-assembly (EISA) at its limit: Ultrathin, crystalline patterns by templating of micellar monolayers. Adv. Mater. 18, 2260–2263 (2006).

    Article  CAS  Google Scholar 

  21. Grosso, D. et al. Periodically ordered nanoscale islands and mesoporous films composed of nanocrystalline multimetallic oxides. Nature Mater. 3, 787–792 (2004).

    Article  CAS  Google Scholar 

  22. Brezesinski, T. et al. Highly crystalline WO3 thin films with ordered 3D mesoporosity and improved electrochromic performance. Small 2, 1203–1211 (2006).

    Article  CAS  Google Scholar 

  23. Tsumura, T. & Inagaki, M. Lithium insertion/extraction reaction on crystalline MoO3 . Solid State Ion. 104, 183–189 (1997).

    Article  CAS  Google Scholar 

  24. Li, W. Y., Cheng, F. Y., Tao, Z. L. & Chen, J. Vapor-transportation preparation and reversible lithium intercalation/deintercalation of alpha-MoO3 microrods. J. Phys. Chem. B 110, 119–124 (2006).

    Article  CAS  Google Scholar 

  25. Brezesinski, T. et al. Surfactant-mediated generation of iso-oriented dense and mesoporous crystalline metal-oxide layers. Adv. Mater. 18, 1827–1831 (2006).

    Article  CAS  Google Scholar 

  26. Warren, B. E. & Averbach, B. L. The effect of cold-work distortion on X-ray patterns. J. Appl. Phys. 21, 595–599 (1950).

    Article  CAS  Google Scholar 

  27. Dong, W., Mansour, A. N. & Dunn, B. Structural and electrochemical properties of amorphous and crystalline molybdenum oxide aerogels. Solid State Ion. 144, 31–40 (2001).

    CAS  Google Scholar 

  28. Iriyama, Y., Abe, T., Inaba, M. & Ogumi, Z. Transmission electron microscopy (TEM) analysis of two-phase reaction in electrochemical lithium insertion within α-MoO3 . Solid State Ion. 135, 95–100 (2000).

    Article  CAS  Google Scholar 

  29. McEvoy, T. M., Stevenson, K. J., Hupp, J. T. & Dang, X. Electrochemical preparation of molybdenum trioxide thin films: Effect of sintering on electrochromic and electroinsertion properties. Langmuir 19, 4316–4326 (2003).

    Article  CAS  Google Scholar 

  30. Bard, A. J. & Faulkner, L R. Electrochemical Methods: Fundamentals and Applications (Wiley, 1980).

    Google Scholar 

  31. Li, J. R., Tang, Z. L. & Zhang, Z. T. Layered hydrogen titanate nanowires with novel lithium intercalation properties. Chem. Mater. 17, 5848–5855 (2005).

    Article  CAS  Google Scholar 

  32. Kirsch, B. L., Chen, X., Richman, E. K., Gupta, V. & Tolbert, S. H. Probing the effects of nanoscale architecture on the mechanical properties of hexagonal silica/polymer composite thin films. Adv. Funct. Mater. 15, 1319–1327 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank K.-I. Iimura, A. Reinecke, K. Brezesinski, J. Perlich and V. Augustyn for their assistance in materials preparation and measurements. This work was supported by the Office of Naval Research (B.D. and S.H.T.), the National Science Foundation under grant CHE-0527015 (S.H.T.) and by the Fonds der Chemischen Industrie (Liebig Fellowship, T.B.).

Author information

Authors and Affiliations

Authors

Contributions

T.B. and J.W.: experimental work and data analysis. S.H.T. and B.D.: project planning and data analysis.

Corresponding authors

Correspondence to Sarah H. Tolbert or Bruce Dunn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 556 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brezesinski, T., Wang, J., Tolbert, S. et al. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nature Mater 9, 146–151 (2010). https://doi.org/10.1038/nmat2612

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2612

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing