Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging


In the domain of health, one important challenge is the efficient delivery of drugs in the body using non-toxic nanocarriers. Most of the existing carrier materials show poor drug loading (usually less than 5 wt% of the transported drug versus the carrier material) and/or rapid release of the proportion of the drug that is simply adsorbed (or anchored) at the external surface of the nanocarrier. In this context, porous hybrid solids, with the ability to tune their structures and porosities for better drug interactions and high loadings, are well suited to serve as nanocarriers for delivery and imaging applications. Here we show that specific non-toxic porous iron(III)-based metal–organic frameworks with engineered cores and surfaces, as well as imaging properties, function as superior nanocarriers for efficient controlled delivery of challenging antitumoural and retroviral drugs (that is, busulfan, azidothymidine triphosphate, doxorubicin or cidofovir) against cancer and AIDS. In addition to their high loadings, they also potentially associate therapeutics and diagnostics, thus opening the way for theranostics, or personalized patient treatments.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1
Figure 2
Figure 3: CDV (black), doxo (red) and AZT-TP (green) delivery under simulated physiological conditions (PBS, 37 C) from MIL-100 nanoparticles.
Figure 4: Magnetic resonance images.


  1. 1

    Peer, D. et al. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotech. 2, 751–760 (2007).

    CAS  Google Scholar 

  2. 2

    Couvreur, P., Gref, R., Andrieux, K. & Malvy, C. Nanotechnology for drug delivery: Applications to cancer and autoimmune diseases. Prog. Solid State Chem. 34, 231–235 (2006).

    CAS  Article  Google Scholar 

  3. 3

    Gref, R. et al. Biodegradable long-circulating polymeric nanospheres. Science 263, 1600–1603 (1994).

    CAS  Article  Google Scholar 

  4. 4

    Gabizon, A. Stealth liposomes and tumor targeting: One step further in the quest for the magic bullet. Clin. Cancer Res. 7, 223–225 (2001).

    CAS  Google Scholar 

  5. 5

    Sheikh Hasan, A. et al. Effect of the microencapsulation of nanoparticles on the reduction of burst release. Int. J. Pharm. 344, 53–61 (2007).

    Article  Google Scholar 

  6. 6

    Horcajada, P. et al. Metal–organic frameworks as efficient materials for drug delivery. Angew. Chem. Int. Ed. 45, 5974–5978 (2006).

    CAS  Article  Google Scholar 

  7. 7

    Horcajada, P. et al. Flexible porous metal–organic frameworks for a controlled drug delivery. J. Am. Chem. Soc. 130, 6774–6780 (2008).

    CAS  Article  Google Scholar 

  8. 8

    Hinks, N. J., McKinlay, A. C., Xiao, B., Wheatley, P. S. & Morris, R. E. Metal organic frameworks as NO delivery materials for biological applications. Microporous Mesoporous Mater. 10.1016/j.micromeso.2009.04.031 (2009) (in the press).

  9. 9

    Xiao, B. et al. Chemically blockable transformation and ultraselective low-pressure gas adsorption in a non-porous metal organic framework. Nature Chem. 1, 289–294 (2009).

    CAS  Article  Google Scholar 

  10. 10

    Rieter, W. J., Pott, K. M., Taylor, K. M. L. & Lin, W. Nanoscale coordination polymers for platinum-based anticancer drug delivery. J. Am. Chem. Soc. 130, 11584–11585 (2008).

    CAS  Article  Google Scholar 

  11. 11

    Rieter, W. J., Taylor, K. M. L., An, H. & Lin, W. Nanoscale metal–organic frameworks as potential multimodal contrast enhancing agents. J. Am. Chem. Soc. 128, 9024–9025 (2006).

    CAS  Article  Google Scholar 

  12. 12

    Taylor, K. M. L., Jin, A. & Lin, W. Surfactant-assisted synthesis of nanoscale gadolinium metal–organic-framework for potential multimodal imaging. Angew. Chem. Int. Ed. 47, 7722–7725 (2008).

    CAS  Article  Google Scholar 

  13. 13

    Taylor, K. M. L., Rieter, W. J. & Lin, W. Manganese-based nanoscale metal–organic frameworks for magnetic resonance imaging. J. Am. Chem. Soc. 130, 14358–14359 (2008).

    CAS  Article  Google Scholar 

  14. 14

    Férey, G. Hybrid porous solids: Past, present, future. Chem. Soc. Rev. 37, 191–241 (2008).

    Article  Google Scholar 

  15. 15

    Jhung, S. H. et al. Microwave synthesis of chromium terephthalate MIL-101 and its benzene sorption ability. Adv. Mater. 19, 121–124 (2007).

    CAS  Article  Google Scholar 

  16. 16

    Hermes, S. et al. Selective nucleation and growth of metal–organic open framework thin films on patterned COOH/CF3-terminated self-assembled monolayers on Au(111). J. Am. Chem. Soc. 127, 13744–13745 (2005).

    CAS  Article  Google Scholar 

  17. 17

    Scherb, C. & Bein, T. Directing the structure of metal–organic frameworks by oriented surface growth on an organic monolayer. Angew. Chem. Int. Ed. 47, 5777–5779 (2008).

    CAS  Article  Google Scholar 

  18. 18

    Llewellyn, P. L. et al. High uptakes of CO2 and CH4 in mesoporous metal–organic-frameworks MIL-100 and MIL-101. Langmuir 24, 7245–7250 (2008).

    CAS  Article  Google Scholar 

  19. 19

    Horcajada, P., Serre, C., Gref, R., Férey, G. & Couvreur, P. Nanoparticules hybrides organiques inorganiques à base de carboxylates de fer, PCT applications PCT/FR2008/001366, 01 October 2008.

  20. 20

    Horcajada, P., Serre, C., Gref, R., Férey, G. & Couvreur, P. Solides hybrides organique–inorganique à surface modifiée, PCT applications PCT/FR2008/001367, 01 October 2008.

  21. 21

    Férey, G. & Serre, C. Large breathing effects in three-dimensional porous hybrid matter: Facts, analyses, rules and consequences. Chem. Soc. Rev. 38, 1380–1399 (2009).

    Article  Google Scholar 

  22. 22

    Serre, C. et al. Role of solvent-host interactions that lead to very large swelling of hybrid frameworks. Science 315, 1828–w1831 (2007).

    CAS  Article  Google Scholar 

  23. 23

    Serre, C. et al. A route to the synthesis of trivalent transition-metal porous carboxylates with trimeric secondary building units. Angew. Chem. Int. Ed. 43, 6285–6289 (2004).

    Article  Google Scholar 

  24. 24

    Surblé, S. et al. A new isoreticular class of metal–organic-frameworks with the MIL-88 topology. Chem. Commun. 3, 284–286 (2006).

    Article  Google Scholar 

  25. 25

    Whitfield, T. R., Wang, X., Liu, L. & Jacobson, A. J. Metal-organic frameworks based on iron oxide octahedral chains connected by benzenedicarboxylate dianions. Solid State Sci. 7, 1096–1103 (2005).

    CAS  Article  Google Scholar 

  26. 26

    Horcajada, P. et al. Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores. Chem. Commun. 27, 2820–2822 (2007).

    Article  Google Scholar 

  27. 27

    Bauer, S. et al. High-throughput assisted rationalization or the formation of metal–organic framework in the iron(III) aminoterephthalate solvothermal system. Inorg. Chem. 47, 7568–7576 (2008).

    CAS  Article  Google Scholar 

  28. 28

    Gref, R. et al. The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv. Drug Deliv. Rev. 16, 215–233 (1995).

    CAS  Article  Google Scholar 

  29. 29

    Sheftel, V. O. Indirect Food Additives and Polymers: Migration and Toxicology 148–154 (Lewis Publishers, 2000).

    Google Scholar 

  30. 30

    <http://www.chem.unep.ch/irptc/sids/OECDSIDS/100-21-0.pdf> (2008).

  31. 31

    <http://www.chemicalland21.com/specialtychem/perchem/TRIMESIC%20ACID.htm> (2008).

  32. 32

    <http://www.sciencelab.com/xMSDS-Fumaric_acid-9927173> (2008).

  33. 33

    Mosmann, T. Rapid colourimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63 (1983).

    CAS  Article  Google Scholar 

  34. 34

    Soma, C. E. et al. Drug delivery to resistance tumors: The potential of poly(alkyl cyanoacrylate) nanoparticles. J. Control. Release 68, 283–289 (2000).

    CAS  Article  Google Scholar 

  35. 35

    Vassal, G. et al. Is 600 mg m−2 the appropriate dosage of busulfan in children undergoing bone marrow transplantation? Blood 79, 2475–2479 (1992).

    CAS  Google Scholar 

  36. 36

    Vassal, G. et al. Pharmacokinetics of high-dose busulfan in children. Cancer Chemother. Pharmacol. 24, 386–390 (1989).

    CAS  Google Scholar 

  37. 37

    Slattery, T. et al. Graft-rejection and toxicity following bone marrow transplantation in relation to busulfan pharmacokinetics. Bone Marrow Transplant. 16, 31–42 (1995).

    CAS  Google Scholar 

  38. 38

    Layre, A., Gref, R., Richard, J., Requier, D. & Couvreur, P. Nanoparticules polymériques composites, FR 04 07569, 7 July 2004.

  39. 39

    Hassan, Z., Nilsson, C. & Hassan, M. Liposomal busulphan: Bioavailability and effect on bone marrow in mice. Bone Marrow Transplant. 22, 913–918 (1998).

    CAS  Article  Google Scholar 

  40. 40

    Madden, T. et al. Pharmacokinetics of once-daily IV busulfan as part of pretransplantation preparative regimens: A comparison with an every 6-hour dosing schedule. Biol. Blood Marrow Transplant. 13, 56–64 (2007).

    CAS  Article  Google Scholar 

  41. 41

    Thierry, A. R. et al. Modulation of doxorubicin resistance in multidrug-resistant cells by liposomes. FASEB J. 7, 572–579 (1993).

    CAS  Article  Google Scholar 

  42. 42

    Loke, S. L. et al. Characterization of oligonucleotide transport into living cells. Proc. Natl Acad. Sci. USA 86, 3474–3478 (1989).

    CAS  Article  Google Scholar 

  43. 43

    Kukhanova, M. et al. Design of anti-HIV compounds: From nucleoside to nucleoside 5′-triphosphate analogs. Problems and perspectives. Curr. Pharm. Des. 6, 585–598 (2000).

    CAS  Article  Google Scholar 

  44. 44

    Hillaireau, H. et al. Encapsulation of antiviral nucleotide analogues azidothymidine-triphosphate and cidofovir in poly(iso-butylcyanoacrylate) nanocapsules. Int. J. Pharm. 324, 37–42 (2006).

    CAS  Article  Google Scholar 

  45. 45

    Roch, A. et al. Theory of proton relaxation induced by superparamagnetic particles. J. Chem. Phys. 110, 5403–5411 (1999).

    CAS  Article  Google Scholar 

  46. 46

    Muller, R. N. et al. in The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging (eds Merbach, A. E. & Tóth, É.) 417–435 (Wiley, 2001).

    Google Scholar 

Download references


We acknowledge E. Legenre, M. Belle, F. Kani, C. Bellanger and E. Jubeli for their help with the experiments. We are grateful to J-M. Greneche, H. Chacun, M. Apple, C. Bories, H.Hillarieu, and O. David for their collaboration. We thank K. Storck, V. Huyot and R. Yousfi for their technical assistance with the AZT-TP experiments.

This work was partially supported by the CNRS, Université Paris Sud, Université de Versailles Saint-Quentin, EU funding through the ERC-2007-209241-BioMOFs, ERC and KOCI through the Institutional Research Program of KRICT. KRICT’s authors thank You-Kyong Seo for his experimental assistance.

Author information




P.H., nanoMOF synthesis, surface modification of nanoparticles, drug and cosmetic encapsulation tests, toxicity assays, degradation tests,in vivo magnetic resonance imaging; C. Serre, nanoMOF synthesis, surface modification of nanoparticles, drug and cosmetic encapsulation tests, degradation tests, imaging applications; T.C., nanoMOF synthesis, PEG modification, drug encapsulation and delivery, in vitro toxicity assays, degradation tests, in vitro magnetic resonance imaging; B.G. and C. Sebrie, imaging applications; T.B., in vivo toxicity assays, nanoMOF degradation tests, doxorubicin encapsulation and delivery; J.F.E., nanoMOF degradation tests; D.H., synthesis of nanoparticles of MIL-101 _NH2; P. Clayette and C.K., anti-HIV activity of MIL-100 nanoparticles; J.-S.C. and Y.K.H., synthesis of nanoparticles of MIL-100 and MIL-53 in water; V.M., busulfan activity tests; P.-N.B. and L.C., liver function evaluation in the in vivo toxicity assays; S.G., activity of Cyp-450 in the in vivo toxicity assays; G.F., nanoMOF synthesis, surface modification of nanoparticles; P. Couvreur, drug encapsulation and delivery, toxicity assays, surface modification of nanoparticles; R.G., drug encapsulation and delivery, toxicity assays, surface modification of nanoparticles, imaging applications.

Corresponding authors

Correspondence to Patricia Horcajada or Ruxandra Gref.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3575 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Horcajada, P., Chalati, T., Serre, C. et al. Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nature Mater 9, 172–178 (2010). https://doi.org/10.1038/nmat2608

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing