Oscillatory spin-polarized tunnelling from silicon quantum wells controlled by electric field


Spin-dependent electronic transport is widely used to probe and manipulate magnetic materials and develop spin-based devices. Spin-polarized tunnelling, successful in ferromagnetic metal junctions, was recently used to inject and detect electron spins in organics and bulk GaAs or Si. Electric field control of spin precession was studied in III–V semiconductors relying on spin–orbit interaction, which makes this approach inefficient for Si, the mainstream semiconductor. Methods to control spin other than through precession are thus desired. Here we demonstrate electrostatic modification of the magnitude of spin polarization in a silicon quantum well, and detection thereof by means of tunnelling to a ferromagnet, producing prominent oscillations of tunnel magnetoresistance of up to 8%. The electric modification of the spin polarization relies on discrete states in the Si with a Zeeman spin splitting, an approach that is also applicable to organic, carbon-based and other materials with weak spin–orbit interaction.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Device layout and diagrams of electric field effect on spins in a Si 2DEG.
Figure 2: Principle of detecting spin polarization in Si 2DEG and conductance spectra.
Figure 3: Electric field modification of spin polarization in a Si 2DEG and oscillatory spin-polarized tunnelling.
Figure 4: Temperature and magnetic field scaling of TMR from a silicon 2DEG.
Figure 5: Absence of spin signals in control device with Yb.
Figure 6: Calculated TMR resonance in the presence of potential variations.


  1. 1

    Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  Google Scholar 

  2. 2

    Awschalom, D. D. & Flatté, M. E. Challenges for semiconductor spintronics. Nature Phys. 3, 153–159 (2007).

    CAS  Article  Google Scholar 

  3. 3

    Chappert, C., Fert, A. & Nguyen van Dau, F. The emergence of spin electronics in data storage. Nature Mater. 6, 813–823 (2007).

    CAS  Article  Google Scholar 

  4. 4

    Moodera, J. S., Kinder, L. R., Wong, T. M. & Meservey, R. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74, 3273–3276 (1995).

    CAS  Article  Google Scholar 

  5. 5

    Miyazaki, T. & Tezuka, N. Giant magnetic tunnelling effect in Fe/Al2O3/Fe junction. J. Magn. Magn. Mater. 139, L231–L234 (1995).

    CAS  Article  Google Scholar 

  6. 6

    Parkin, S. S. P. et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nature Mater. 3, 862–867 (2004).

    CAS  Article  Google Scholar 

  7. 7

    Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y. & Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nature Mater. 3, 868–871 (2004).

    CAS  Article  Google Scholar 

  8. 8

    Fuchs, G. D. et al. Spin-transfer effects in nanoscale magnetic tunnel junctions. Appl. Phys. Lett. 85, 1205–1207 (2004).

    CAS  Article  Google Scholar 

  9. 9

    Tulapurkar, A. A. et al. Spin-torque diode effect in magnetic tunnel junctions. Nature 438, 339–342 (2005).

    CAS  Article  Google Scholar 

  10. 10

    Deac, A. M. et al. Bias-driven high-power microwave emission from MgO-based tunnel magnetoresistance devices. Nature Phys. 4, 803–809 (2008).

    CAS  Article  Google Scholar 

  11. 11

    Appelbaum, I., Huang, B. & Monsma, D. J. Electronic measurement and control of spin transport in silicon. Nature 447, 295–298 (2007).

    CAS  Article  Google Scholar 

  12. 12

    Hueso, L. E. et al. Transformation of spin information into large electrical signals using carbon nanotubes. Nature 445, 410–413 (2007).

    CAS  Article  Google Scholar 

  13. 13

    Tombros, N., Jozsa, C., Popinciuc, M., Jonkman, H. T. & van Wees, B. J. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448, 571–574 (2007).

    CAS  Article  Google Scholar 

  14. 14

    Santos, T. S. et al. Room-temperature tunnel magnetoresistance and spin-polarized tunnelling through an organic semiconductor barrier. Phys. Rev. Lett. 98, 016601 (2007).

    CAS  Article  Google Scholar 

  15. 15

    Lou, X. et al. Electrical detection of spin transport in lateral ferromagnet-semiconductor devices. Nature Phys. 3, 197–202 (2007).

    CAS  Article  Google Scholar 

  16. 16

    Jonker, B. T., Kioseoglou, G., Hanbicki, A. T., Li, C. H. & Thompson, P. E. Electrical spin-injection into silicon from a ferromagnetic metal/tunnel barrier contact. Nature Phys. 3, 542–546 (2007).

    CAS  Article  Google Scholar 

  17. 17

    van ’t Erve, O. M. J. et al. Electrical injection and detection of spin-polarized carriers in silicon in a lateral transport geometry. Appl. Phys. Lett. 91, 212109 (2007).

    Article  Google Scholar 

  18. 18

    Dash, S. P., Sharma, S., Patel, R. S., de Jong, M. P. & Jansen, R. Electrical creation of spin polarization in silicon at room temperature. Nature 462, 491–494 (2009).

    CAS  Article  Google Scholar 

  19. 19

    Min, B. C., Motohashi, K., Lodder, J. C. & Jansen, R. Tunable spin-tunnel contacts to silicon using low-work-function ferromagnets. Nature Mater. 5, 817–822 (2006).

    CAS  Article  Google Scholar 

  20. 20

    Jansen, R. & Min, B. C. Detection of a spin accumulation in nondegenerate semiconductors. Phys. Rev. Lett. 99, 246604 (2007).

    CAS  Article  Google Scholar 

  21. 21

    Žutić, I., Fabian, J. & Erwin, S. C. Spin injection and detection in silicon. Phys. Rev. Lett. 97, 026602 (2006).

    Article  Google Scholar 

  22. 22

    Datta, S. & Das, B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990).

    CAS  Article  Google Scholar 

  23. 23

    Nitta, J., Akazaki, T., Takayanagi, H. & Enoki, T. Gate control of spin–orbit interaction in an inverted InGaAs/InAlAs heterostructure. Phys. Rev. Lett. 78, 1335–1338 (1997).

    CAS  Article  Google Scholar 

  24. 24

    Salis, G. et al. Electrical control of spin coherence in semiconductor nanostructures. Nature 414, 619–622 (2001).

    CAS  Article  Google Scholar 

  25. 25

    Sandhu, J. S., Heberle, A. P., Baumberg, J. J. & Cleaver, J. R. A. Gateable suppression of spin relaxation in semiconductors. Phys. Rev. Lett. 86, 2150–2153 (2001).

    CAS  Article  Google Scholar 

  26. 26

    Karimov, O. Z. et al. High temperature gate control of quantum well spin memory. Phys. Rev. Lett. 91, 246601 (2003).

    CAS  Article  Google Scholar 

  27. 27

    Hall, K. C. & Flatté, M. E. Performance of spin-based insulated gate field effect transistor. Appl. Phys. Lett. 88, 162503 (2006).

    Article  Google Scholar 

  28. 28

    Koo, H. C. et al. Control of spin precession in a spin-injected field effect transistor. Science 325, 1515–1518 (2009).

    CAS  Article  Google Scholar 

  29. 29

    Wilamowski, Z., Malissa, H., Schäffler, F. & Jantsch, W. g-factor tuning and manipulation of spins by an electric current. Phys. Rev. Lett. 98, 187203 (2007).

    Article  Google Scholar 

  30. 30

    Ohno, H. et al. Electric field control of ferromagnetism. Nature 408, 944–946 (2000).

    CAS  Article  Google Scholar 

  31. 31

    Lottermoser, Th. et al. Magnetic phase control by an electric field. Nature 430, 541–544 (2004).

    CAS  Article  Google Scholar 

  32. 32

    Ando, T., Fowler, A. B. & Stern, F. Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54, 437–672 (1982).

    CAS  Article  Google Scholar 

  33. 33

    Biagi, R. et al. Photoemission investigation of alkali-metal-induced two-dimensional electron gas at the Si(111)(1×1):H surface. Phys. Rev. B 67, 155325 (2003).

    Article  Google Scholar 

  34. 34

    Sze, S. M. Physics of Semiconductor Devices 2nd edn (Wiley, 1981).

    Google Scholar 

  35. 35

    Fert, A., George, J.-M., Jaffrès, H. & Mattana, R. Semiconductor between spin-polarized source and drain. IEEE Trans. Electron. Devices 54, 921–932 (2007).

    CAS  Article  Google Scholar 

  36. 36

    Fert, A. & Jaffrès, H. Conditions for efficient spin injection from a ferromagnetic metal into a semiconductor. Phys. Rev. B 64, 184420 (2001).

    Article  Google Scholar 

  37. 37

    Gould, C. et al. Tunneling anisotropic magnetoresistance: A spin-valve-like tunnel magnetoresistance using a single magnetic layer. Phys. Rev. Lett. 93, 117203 (2004).

    CAS  Article  Google Scholar 

  38. 38

    Elsen, M. et al. Exchange-mediated anisotropy of (Ga, Mn)As valence-band probed by resonant tunnelling spectroscopy. Phys. Rev. Lett. 99, 127203 (2007).

    CAS  Article  Google Scholar 

  39. 39

    Tsui, D. C. Electron-tunnelling studies of a quantized surface accumulation layer. Phys. Rev. B 4, 4438–4449 (1971).

    Article  Google Scholar 

  40. 40

    Yuasa, S., Nagahama, T. & Suzuki, Y. Spin-polarized resonant tunnelling in magnetic tunnel junctions. Science 297, 234–237 (2002).

    CAS  Article  Google Scholar 

  41. 41

    Shang, C. H., Nowak, J., Jansen, R. & Moodera, J. S. Temperature dependence of magnetoresistance and surface magnetization in ferromagnetic tunnel junctions. Phys. Rev. B 58, R2917–R2920 (1998).

    CAS  Article  Google Scholar 

  42. 42

    Patel, R. S., Dash, S. P., de Jong, M. P. & Jansen, R. Magnetic tunnel contacts to silicon with low-work-function ytterbium nanolayers. J. Appl. Phys. 106, 016107 (2009).

    Article  Google Scholar 

  43. 43

    Dery, H., Dalal, P., Cywiński, L. & Sham, L. J. Spin-based logic in semiconductors for reconfigurable large-scale circuits. Nature 447, 573–576 (2007).

    CAS  Article  Google Scholar 

  44. 44

    Lampel, G. Nuclear dynamic polarization by optical electronic saturation and optical pumping in semiconductors. Phys. Rev. Lett. 20, 491–493 (1968).

    CAS  Article  Google Scholar 

  45. 45

    Matsunami, J., Ooya, M. & Okamoto, T. Electrically detected electron spin resonance in a high-mobility silicon quantum well. Phys. Rev. Lett. 97, 066602 (2006).

    Article  Google Scholar 

  46. 46

    Ohtomo, A. & Hwang, H. Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423–426 (2004).

    CAS  Article  Google Scholar 

  47. 47

    Tsukazaki, A. et al. Quantum Hall effect in polar oxide heterostructures. Science 315, 1388–1391 (2007).

    CAS  Article  Google Scholar 

  48. 48

    Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    CAS  Article  Google Scholar 

  49. 49

    Alves, H., Molinari, A. S., Xie, H. & Morpurgo, A. F. Metallic conduction at organic charge-transfer interfaces. Nature Mater. 7, 574–580 (2008).

    CAS  Article  Google Scholar 

  50. 50

    Succi, M., Canino, R. & Ferrario, B. Atomic-absorption evaporation flow-rate measurements of alkali-metal dispensers. Vacuum 35, 579–582 (1985).

    CAS  Article  Google Scholar 

Download references


The authors are grateful to D. Pierce for sharing his knowledge about the Cs-metal dispensers, and to M. P. de Jong for useful discussions. This work was financially supported by the NWO-VIDI programme, the Netherlands Foundation for Fundamental Research on Matter (FOM) and the Netherlands Nanotechnology Networks NANOIMPULS and NANONED (supported by the Ministry of Economic Affairs).

Author information




R.J. conceived and designed the experiment, coordinated the project and carried out most of the transport measurements. B.C.M. and S.P.D. fabricated the devices and carried out part of the measurements. All co-authors contributed important insight. R.J. wrote the paper, with input from all co-authors.

Corresponding author

Correspondence to Ron Jansen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 329 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jansen, R., Min, BC. & Dash, S. Oscillatory spin-polarized tunnelling from silicon quantum wells controlled by electric field. Nature Mater 9, 133–138 (2010). https://doi.org/10.1038/nmat2605

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing