Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Oscillatory spin-polarized tunnelling from silicon quantum wells controlled by electric field

Abstract

Spin-dependent electronic transport is widely used to probe and manipulate magnetic materials and develop spin-based devices. Spin-polarized tunnelling, successful in ferromagnetic metal junctions, was recently used to inject and detect electron spins in organics and bulk GaAs or Si. Electric field control of spin precession was studied in III–V semiconductors relying on spin–orbit interaction, which makes this approach inefficient for Si, the mainstream semiconductor. Methods to control spin other than through precession are thus desired. Here we demonstrate electrostatic modification of the magnitude of spin polarization in a silicon quantum well, and detection thereof by means of tunnelling to a ferromagnet, producing prominent oscillations of tunnel magnetoresistance of up to 8%. The electric modification of the spin polarization relies on discrete states in the Si with a Zeeman spin splitting, an approach that is also applicable to organic, carbon-based and other materials with weak spin–orbit interaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Device layout and diagrams of electric field effect on spins in a Si 2DEG.
Figure 2: Principle of detecting spin polarization in Si 2DEG and conductance spectra.
Figure 3: Electric field modification of spin polarization in a Si 2DEG and oscillatory spin-polarized tunnelling.
Figure 4: Temperature and magnetic field scaling of TMR from a silicon 2DEG.
Figure 5: Absence of spin signals in control device with Yb.
Figure 6: Calculated TMR resonance in the presence of potential variations.

Similar content being viewed by others

References

  1. Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  Google Scholar 

  2. Awschalom, D. D. & Flatté, M. E. Challenges for semiconductor spintronics. Nature Phys. 3, 153–159 (2007).

    Article  CAS  Google Scholar 

  3. Chappert, C., Fert, A. & Nguyen van Dau, F. The emergence of spin electronics in data storage. Nature Mater. 6, 813–823 (2007).

    Article  CAS  Google Scholar 

  4. Moodera, J. S., Kinder, L. R., Wong, T. M. & Meservey, R. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74, 3273–3276 (1995).

    Article  CAS  Google Scholar 

  5. Miyazaki, T. & Tezuka, N. Giant magnetic tunnelling effect in Fe/Al2O3/Fe junction. J. Magn. Magn. Mater. 139, L231–L234 (1995).

    Article  CAS  Google Scholar 

  6. Parkin, S. S. P. et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nature Mater. 3, 862–867 (2004).

    Article  CAS  Google Scholar 

  7. Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y. & Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nature Mater. 3, 868–871 (2004).

    Article  CAS  Google Scholar 

  8. Fuchs, G. D. et al. Spin-transfer effects in nanoscale magnetic tunnel junctions. Appl. Phys. Lett. 85, 1205–1207 (2004).

    Article  CAS  Google Scholar 

  9. Tulapurkar, A. A. et al. Spin-torque diode effect in magnetic tunnel junctions. Nature 438, 339–342 (2005).

    Article  CAS  Google Scholar 

  10. Deac, A. M. et al. Bias-driven high-power microwave emission from MgO-based tunnel magnetoresistance devices. Nature Phys. 4, 803–809 (2008).

    Article  CAS  Google Scholar 

  11. Appelbaum, I., Huang, B. & Monsma, D. J. Electronic measurement and control of spin transport in silicon. Nature 447, 295–298 (2007).

    Article  CAS  Google Scholar 

  12. Hueso, L. E. et al. Transformation of spin information into large electrical signals using carbon nanotubes. Nature 445, 410–413 (2007).

    Article  CAS  Google Scholar 

  13. Tombros, N., Jozsa, C., Popinciuc, M., Jonkman, H. T. & van Wees, B. J. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448, 571–574 (2007).

    Article  CAS  Google Scholar 

  14. Santos, T. S. et al. Room-temperature tunnel magnetoresistance and spin-polarized tunnelling through an organic semiconductor barrier. Phys. Rev. Lett. 98, 016601 (2007).

    Article  CAS  Google Scholar 

  15. Lou, X. et al. Electrical detection of spin transport in lateral ferromagnet-semiconductor devices. Nature Phys. 3, 197–202 (2007).

    Article  CAS  Google Scholar 

  16. Jonker, B. T., Kioseoglou, G., Hanbicki, A. T., Li, C. H. & Thompson, P. E. Electrical spin-injection into silicon from a ferromagnetic metal/tunnel barrier contact. Nature Phys. 3, 542–546 (2007).

    Article  CAS  Google Scholar 

  17. van ’t Erve, O. M. J. et al. Electrical injection and detection of spin-polarized carriers in silicon in a lateral transport geometry. Appl. Phys. Lett. 91, 212109 (2007).

    Article  Google Scholar 

  18. Dash, S. P., Sharma, S., Patel, R. S., de Jong, M. P. & Jansen, R. Electrical creation of spin polarization in silicon at room temperature. Nature 462, 491–494 (2009).

    Article  CAS  Google Scholar 

  19. Min, B. C., Motohashi, K., Lodder, J. C. & Jansen, R. Tunable spin-tunnel contacts to silicon using low-work-function ferromagnets. Nature Mater. 5, 817–822 (2006).

    Article  CAS  Google Scholar 

  20. Jansen, R. & Min, B. C. Detection of a spin accumulation in nondegenerate semiconductors. Phys. Rev. Lett. 99, 246604 (2007).

    Article  CAS  Google Scholar 

  21. Žutić, I., Fabian, J. & Erwin, S. C. Spin injection and detection in silicon. Phys. Rev. Lett. 97, 026602 (2006).

    Article  Google Scholar 

  22. Datta, S. & Das, B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990).

    Article  CAS  Google Scholar 

  23. Nitta, J., Akazaki, T., Takayanagi, H. & Enoki, T. Gate control of spin–orbit interaction in an inverted InGaAs/InAlAs heterostructure. Phys. Rev. Lett. 78, 1335–1338 (1997).

    Article  CAS  Google Scholar 

  24. Salis, G. et al. Electrical control of spin coherence in semiconductor nanostructures. Nature 414, 619–622 (2001).

    Article  CAS  Google Scholar 

  25. Sandhu, J. S., Heberle, A. P., Baumberg, J. J. & Cleaver, J. R. A. Gateable suppression of spin relaxation in semiconductors. Phys. Rev. Lett. 86, 2150–2153 (2001).

    Article  CAS  Google Scholar 

  26. Karimov, O. Z. et al. High temperature gate control of quantum well spin memory. Phys. Rev. Lett. 91, 246601 (2003).

    Article  CAS  Google Scholar 

  27. Hall, K. C. & Flatté, M. E. Performance of spin-based insulated gate field effect transistor. Appl. Phys. Lett. 88, 162503 (2006).

    Article  Google Scholar 

  28. Koo, H. C. et al. Control of spin precession in a spin-injected field effect transistor. Science 325, 1515–1518 (2009).

    Article  CAS  Google Scholar 

  29. Wilamowski, Z., Malissa, H., Schäffler, F. & Jantsch, W. g-factor tuning and manipulation of spins by an electric current. Phys. Rev. Lett. 98, 187203 (2007).

    Article  Google Scholar 

  30. Ohno, H. et al. Electric field control of ferromagnetism. Nature 408, 944–946 (2000).

    Article  CAS  Google Scholar 

  31. Lottermoser, Th. et al. Magnetic phase control by an electric field. Nature 430, 541–544 (2004).

    Article  CAS  Google Scholar 

  32. Ando, T., Fowler, A. B. & Stern, F. Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54, 437–672 (1982).

    Article  CAS  Google Scholar 

  33. Biagi, R. et al. Photoemission investigation of alkali-metal-induced two-dimensional electron gas at the Si(111)(1×1):H surface. Phys. Rev. B 67, 155325 (2003).

    Article  Google Scholar 

  34. Sze, S. M. Physics of Semiconductor Devices 2nd edn (Wiley, 1981).

    Google Scholar 

  35. Fert, A., George, J.-M., Jaffrès, H. & Mattana, R. Semiconductor between spin-polarized source and drain. IEEE Trans. Electron. Devices 54, 921–932 (2007).

    Article  CAS  Google Scholar 

  36. Fert, A. & Jaffrès, H. Conditions for efficient spin injection from a ferromagnetic metal into a semiconductor. Phys. Rev. B 64, 184420 (2001).

    Article  Google Scholar 

  37. Gould, C. et al. Tunneling anisotropic magnetoresistance: A spin-valve-like tunnel magnetoresistance using a single magnetic layer. Phys. Rev. Lett. 93, 117203 (2004).

    Article  CAS  Google Scholar 

  38. Elsen, M. et al. Exchange-mediated anisotropy of (Ga, Mn)As valence-band probed by resonant tunnelling spectroscopy. Phys. Rev. Lett. 99, 127203 (2007).

    Article  CAS  Google Scholar 

  39. Tsui, D. C. Electron-tunnelling studies of a quantized surface accumulation layer. Phys. Rev. B 4, 4438–4449 (1971).

    Article  Google Scholar 

  40. Yuasa, S., Nagahama, T. & Suzuki, Y. Spin-polarized resonant tunnelling in magnetic tunnel junctions. Science 297, 234–237 (2002).

    Article  CAS  Google Scholar 

  41. Shang, C. H., Nowak, J., Jansen, R. & Moodera, J. S. Temperature dependence of magnetoresistance and surface magnetization in ferromagnetic tunnel junctions. Phys. Rev. B 58, R2917–R2920 (1998).

    Article  CAS  Google Scholar 

  42. Patel, R. S., Dash, S. P., de Jong, M. P. & Jansen, R. Magnetic tunnel contacts to silicon with low-work-function ytterbium nanolayers. J. Appl. Phys. 106, 016107 (2009).

    Article  Google Scholar 

  43. Dery, H., Dalal, P., Cywiński, L. & Sham, L. J. Spin-based logic in semiconductors for reconfigurable large-scale circuits. Nature 447, 573–576 (2007).

    Article  CAS  Google Scholar 

  44. Lampel, G. Nuclear dynamic polarization by optical electronic saturation and optical pumping in semiconductors. Phys. Rev. Lett. 20, 491–493 (1968).

    Article  CAS  Google Scholar 

  45. Matsunami, J., Ooya, M. & Okamoto, T. Electrically detected electron spin resonance in a high-mobility silicon quantum well. Phys. Rev. Lett. 97, 066602 (2006).

    Article  Google Scholar 

  46. Ohtomo, A. & Hwang, H. Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423–426 (2004).

    Article  CAS  Google Scholar 

  47. Tsukazaki, A. et al. Quantum Hall effect in polar oxide heterostructures. Science 315, 1388–1391 (2007).

    Article  CAS  Google Scholar 

  48. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  CAS  Google Scholar 

  49. Alves, H., Molinari, A. S., Xie, H. & Morpurgo, A. F. Metallic conduction at organic charge-transfer interfaces. Nature Mater. 7, 574–580 (2008).

    Article  CAS  Google Scholar 

  50. Succi, M., Canino, R. & Ferrario, B. Atomic-absorption evaporation flow-rate measurements of alkali-metal dispensers. Vacuum 35, 579–582 (1985).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to D. Pierce for sharing his knowledge about the Cs-metal dispensers, and to M. P. de Jong for useful discussions. This work was financially supported by the NWO-VIDI programme, the Netherlands Foundation for Fundamental Research on Matter (FOM) and the Netherlands Nanotechnology Networks NANOIMPULS and NANONED (supported by the Ministry of Economic Affairs).

Author information

Authors and Affiliations

Authors

Contributions

R.J. conceived and designed the experiment, coordinated the project and carried out most of the transport measurements. B.C.M. and S.P.D. fabricated the devices and carried out part of the measurements. All co-authors contributed important insight. R.J. wrote the paper, with input from all co-authors.

Corresponding author

Correspondence to Ron Jansen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 329 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jansen, R., Min, BC. & Dash, S. Oscillatory spin-polarized tunnelling from silicon quantum wells controlled by electric field. Nature Mater 9, 133–138 (2010). https://doi.org/10.1038/nmat2605

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2605

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing