Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Explaining the paradoxical diversity of ultrafast laser-induced demagnetization

Abstract

Pulsed-laser-induced quenching of ferromagnetic order has intrigued researchers since pioneering works in the 1990s. It was reported that demagnetization in gadolinium proceeds within 100 ps, but three orders of magnitude faster in ferromagnetic transition metals such as nickel. Here we show that a model based on electron–phonon-mediated spin-flip scattering explains both timescales on equal footing. Our interpretation is supported by ab initio estimates of the spin-flip scattering probability, and experimental fluence dependencies are shown to agree perfectly with predictions. A phase diagram is constructed in which two classes of laser-induced magnetization dynamics can be distinguished, where the ratio of the Curie temperature to the atomic magnetic moment turns out to have a crucial role. We conclude that the ultrafast magnetization dynamics can be well described disregarding highly excited electronic states, merely considering the thermalized electron system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representations of laser-induced demagnetization of Ni compared with Gd.
Figure 2: Type I and type II magnetization dynamics.
Figure 3: TRMOKE experiments on Ni and Co for different laser fluences, as compared to results of the M3TM model.
Figure 4: Exploring the parameter space of type II dynamics.

Similar content being viewed by others

References

  1. Vaterlaus, A., Beutler, T. & Meier, F. Spin-lattice relaxation time of ferromagnetic gadolinium determined with time-resolved spin-polarized photoemission. Phys. Rev. Lett. 67, 3314–3317 (1991).

    Article  CAS  Google Scholar 

  2. Hübner, W. & Bennemann, K. H. Simple theory for spin-lattice relaxation in metallic rare-earth ferromagnets. Phys. Rev. B 53, 3422–3427 (1996).

    Article  Google Scholar 

  3. Beaurepaire, E., Merle, J.-C., Daunois, A. & Bigot, J.-Y. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 76, 4250–4253 (1996).

    Article  CAS  Google Scholar 

  4. Koopmans, B. Handbook of Magnetism and Advanced Magnetic Materials Vol. 3, 1589–1613 (Wiley, 2007).

    Google Scholar 

  5. Scholl, A., Baumgarten, L., Jacquemin, R. & Eberhardt, W. Ultrafast spin dynamics of ferromagnetic thin films observed by fs spin-resolved two-photon photoemission. Phys. Rev. Lett. 79, 5146–5149 (1997).

    Article  CAS  Google Scholar 

  6. Rhie, H. S., Dürr, H. A. & Eberhardt, W. Femtosecond electron and spin dynamics in Ni/W(110) films. Phys. Rev. Lett. 90, 247201 (2003).

    Article  Google Scholar 

  7. Stamm, C. et al. Femtosecond modification of electron localization and transfer of angular momentum in nickel. Nature Mater. 6, 740–743 (2007).

    Article  CAS  Google Scholar 

  8. Zhang, G. P. & Hübner, W. Laser-induced ultrafast demagnetization in ferromagnetic metals. Phys. Rev. Lett. 85, 3025–3028 (2000).

    Article  CAS  Google Scholar 

  9. Koopmans, B., Ruigrok, J. J. M., Dalla Longa, F. & de Jonge, W. J. M. Unifying ultrafast magnetization dynamics. Phys. Rev. Lett. 95, 267207 (2005).

    Article  CAS  Google Scholar 

  10. Djordjevic, M. & Münzenberg, M. Connecting the timescales in picosecond remagnetization experiments. Phys. Rev. B 75, 012404 (2007).

    Article  Google Scholar 

  11. Kazantseva, N. et al. Towards multiscale modelling of magnetic materials: Simulations of FePt. Phys. Rev. B 77, 184428 (2008).

    Article  Google Scholar 

  12. Cinchetti, M. et al. Spin-flip processes and ultrafast magnetization dynamics in Co: Unifying the microscopic and macroscopic view of femtosecond magnetism. Phys. Rev. Lett. 97, 177201 (2006).

    Article  CAS  Google Scholar 

  13. Melnikov, A. et al. Coherent optical phonons and parametrically coupled magnons induced by femtosecond laser excitation of the Gd(0001) surface. Phys. Rev. Lett. 91, 227403 (2003).

    Article  CAS  Google Scholar 

  14. Loukakos, P. A. et al. Dynamics of the self-energy of the Gd(0001) surface state probed by femtosecond photoemission spectroscopy. Phys. Rev. Lett. 98, 097401 (2007).

    Article  CAS  Google Scholar 

  15. Melnikov, A. et al. Nonequilibrium magnetization dynamics of gadolinium studied by magnetic linear dichroism in time-resolved 4f core-level photoemission. Phys. Rev. Lett. 100, 107202 (2008).

    Article  CAS  Google Scholar 

  16. Bovensiepen, U. Coherent and incoherent excitations of the Gd(0001) surface on ultrafast timescales. J. Phys. Condens. Matter. 19, 083201 (2007).

    Article  Google Scholar 

  17. Wietstruk, M. et al. International Conference on Ultrafast Surface Dynamics 6, Kloster Banz, Germany, 20–25 July (2008).

  18. Elliott, R. J. Theory of the effect of spin–orbit coupling on magnetic resonance in some semiconductors. Phys. Rev. 96, 266–279 (1954).

    Article  CAS  Google Scholar 

  19. Yafet, Y. in Solid State Physics Vol. 14 (eds Seitz, F. & Turnbull, D.) (Academic, 1963).

    Google Scholar 

  20. Kazantseva, N., Nowak, U., Chantrell, R. W., Hohlfeld, J. & Rebei, A. Slow recovery of the magnetization after a sub-picosecond heat pulse. Europhys. Lett. 81, 27004 (2008).

    Article  Google Scholar 

  21. Dalla Longa, F., Kohlhepp, J. T., de Jonge, W. J. M. & Koopmans, B. Influence of photon angular momentum on ultrafast demagnetization in nickel. Phys. Rev. B 75, 224431 (2007).

    Article  Google Scholar 

  22. van Kampen, M., Kohlhepp, J. T., de Jonge, W. J. M., Koopmans, B. & Coehoorn, R. Sub-picosecond electron and phonon dynamics in nickel. J. Phys. Condens. Matter. 17, 6823–6834 (2005).

    Article  CAS  Google Scholar 

  23. Beneu, F. & Monod, P. The Elliott relation in pure metals. Phys. Rev. B 18, 2422–2425 (1978).

    Article  Google Scholar 

  24. Fabian, J. & Das Sarma, S. Spin relaxation of conduction electrons in polyvalent metals: Theory and a realistic calculation. Phys. Rev. Lett. 81, 5624–5627 (1998).

    Article  CAS  Google Scholar 

  25. Pickel, M et al. Spin-orbit hybridization points in the face-centered-cubic cobalt band structure. Phys. Rev. Lett. 101, 066402 (2008).

    Article  CAS  Google Scholar 

  26. Bartelt, A. F. et al. Element-specific spin and orbital momentum dynamics of Fe/Gd multilayers. Appl. Phys. Lett. 90, 162503 (2007).

    Article  Google Scholar 

  27. Hummler, K. & Fähnle, M. Full-potential linear-muffin-tin-orbital calculations of the magnetic properties of rare-earth-transition-metal intermetallics. 1. Description of the formalism and application to the series RCo(5) (R=rare-earth atom). Phys. Rev. B 53, 3272–3289 (1996).

    Article  CAS  Google Scholar 

  28. Stanciu, C. D. et al. Ultrafast spin dynamics across compensation points in ferrimagnetic GdFeCo: The role of angular momentum compensation. Phys. Rev. B 73, 220402(R) (2006).

    Article  Google Scholar 

  29. Malinowski, G. et al. Control of speed and efficiency of ultrafast demagnetization by direct transfer of spin angular momentum. Nature Phys. 4, 855–858 (2008).

    CAS  Google Scholar 

  30. Kim, J. W., Lee, K.-D., Jeong, J.-W. & Shin, S.-C. Ultrafast spin demagnetization by nonthermal electrons of TbFe alloy film. Appl. Phys. Lett. 94, 192506 (2009).

    Article  Google Scholar 

  31. Zhang, Q., Nurmikko, A. V., Miao, G. X., Xiao, G. & Gupta, A. Ultrafast spin-dynamics in half-metallic CrO2 thin films. Phys. Rev. B 74, 064414 (2006).

    Article  Google Scholar 

  32. Müller, G. et al. Spin polarization in half-metals probed by femtosecond spin excitation. Nature Mater. 8, 56–61 (2009).

    Article  Google Scholar 

  33. Kise, T. et al. Ultrafast spin dynamics and critical behaviour in half-metallic ferromagnet: Sr2FeMoO6 . Phys. Rev. Lett. 85, 1986–1989 (2000).

    Article  CAS  Google Scholar 

  34. Ogasawara, T. et al. General features of photoinduced spin dynamics in ferromagnetic and ferrimagnetic compounds. Phys. Rev. Lett. 94, 087202 (2005).

    Article  CAS  Google Scholar 

  35. Wang, J. et al. Ultrafast quenching of ferromagnetism in InMnAs induced by intense laser irradiation. Phys. Rev. Lett. 95, 167401 (2005).

    Article  CAS  Google Scholar 

  36. Roth, T. et al. Dynamics of the coercivity in ultrafast pump-probe experiments. J. Phys. D 41, 164001 (2008).

    Article  Google Scholar 

  37. Anderson, E. H. K., Sewall, S. L., Cooney, R. R. & Kambhampati, P. Noise analysis and noise reduction methods in kilohertz pump-probe experiments. Rev. Sci. Instrum. 78, 073101 (2007).

    Article  Google Scholar 

  38. Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the electron–gas correlation-energy. Phys. Rev. B 45, 13244–13249 (1992).

    Article  CAS  Google Scholar 

  39. Perdew, J. P. & Yue, W. Accurate and simple density functional for the electronic exchange energy—generalized gradient approximation. Phys. Rev. B 33, 8800–8802 (1986).

    Article  CAS  Google Scholar 

  40. Andersen, O. K. & Jepsen, O. Explicit, first-principles tight-binding theory. Phys. Rev. Lett. 53, 2571–2574 (1984).

    Article  CAS  Google Scholar 

  41. Ederer, C., Komelj, M., Fähnle, M. & Schütz, G. Theory of induced magnetic moments and X-ray magnetic circular dichroism in Co–Pt multilayers. Phys. Rev. B 66, 094413 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge U. Bovensiepen for highly enlightening discussions, which significantly contributed to the insight that led to the present work. We are indebted to D. Steil (TU Kaiserslautern) who participated in the TRMOKE measurements. M. Jourdan (Universität Mainz) and C. Döring (TU Kaiserslautern) are acknowledged for sample preparation. We thank the DFG SPP 1133 and the GRK 792 ‘Nonlinear Optics and Ultrafast Processes’, as well as the EU network Ultraswitch for financial support.

Author information

Authors and Affiliations

Authors

Contributions

The M3TM was developed by B.K. and F.D.L.; experimental work was carried out by T.R. and F.D.L.; data analysis and simulations were done by B.K., T.R., G.M. and M.C.; D.S. and M.F. carried out ab initio calculations and provided theory input, and project planning was taken care of by B.K., M.C., M.A. and M.F. B.K. wrote the core of the manuscript, and all authors contributed to certain parts of it.

Corresponding author

Correspondence to B. Koopmans.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 307 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koopmans, B., Malinowski, G., Dalla Longa, F. et al. Explaining the paradoxical diversity of ultrafast laser-induced demagnetization. Nature Mater 9, 259–265 (2010). https://doi.org/10.1038/nmat2593

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2593

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing