Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries

Abstract

Li-ion batteries have contributed to the commercial success of portable electronics, and are now in a position to influence higher-volume applications such as plug-in hybrid electric vehicles. Most commercial Li-ion batteries use positive electrodes based on lithium cobalt oxides. Despite showing a lower voltage than cobalt-based systems (3.45 V versus 4 V) and a lower energy density, LiFePO4 has emerged as a promising contender owing to the cost sensitivity of higher-volume markets. LiFePO4 also shows intrinsically low ionic and electronic transport, necessitating nanosizing and/or carbon coating. Clearly, there is a need for inexpensive materials with higher energy densities. Although this could in principle be achieved by introducing fluorine and by replacing phosphate groups with more electron-withdrawing sulphate groups, this avenue has remained unexplored. Herein, we synthesize and show promising electrode performance for LiFeSO4F. This material shows a slightly higher voltage (3.6 V versus Li) than LiFePO4 and suppresses the need for nanosizing or carbon coating while sharing the same cost advantage. This work not only provides a positive-electrode contender to rival LiFePO4, but also suggests that broad classes of fluoro-oxyanion materials could be discovered.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural characterization of LiFeSO4F.
Figure 2: Textural and structural characterization of LiFeSO4F.
Figure 3: Thermal stability of LiFeSO4F.
Figure 4: Electrochemical characterizations of LiFeSO4F powders.
Figure 5: Electrochemical and structural characterization of LiFeSO4F.
Figure 6: Transport properties of LiFeSO4F powders.

Similar content being viewed by others

References

  1. Nagaura, T & Tozawa, K. Lithium ion rechargeable battery. Prog. Batt. Sol. Cells 9, 209–217 (1990).

    CAS  Google Scholar 

  2. Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J.-M. & van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nature Mater. 4, 366–377 (2005).

    Article  CAS  Google Scholar 

  3. Ravet, N. et al. 196th Meet. Electrochem. Soc., abstr. 127 (1999).

  4. Armand, M., Gauthier, M., Magnan, J.-F. & Ravet, N. Method for synthesis of carbon-coated redox materials with controlled size. World Patent WO 02/27823 A1 (2001).

  5. Poizot, P., Laruelle, S., Grugeon, S, Dupont, L. & Tarascon, J.-M. Nano-sized transition metal oxides as negative electrode material for lithium-ion batteries. Nature 407, 496–499 (2000).

    Article  CAS  Google Scholar 

  6. Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. Phospho-olivines as positive electrode materials for lithium batteries. J. Electrochem. Soc. 144, 1188–1194 (1997).

    Article  CAS  Google Scholar 

  7. Li, G., Azuma, H. & Tohda, H. LiMnPO4 as a cathode for Li-ion batteries. Electrochem. Solid State Lett. 5, A135–A137 (2002).

    Article  CAS  Google Scholar 

  8. Nytén, A., Abouimrane, A., Armand, M., Gustafsson, T. & Thomas, J. O. Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material. Electrochem. Commun. 7, 156–160 (2005).

    Article  Google Scholar 

  9. Yi-Xiao, L., Zheng-Liang, G. & Yong, Y. Synthesis and characterization of Li2MnSiO4/C nanocomposite cathode material for lithium ion batteries. J. Power Sources 174, 528–532 (2007).

    Article  Google Scholar 

  10. Kokalj, A. et al. Beyond one-electron reaction in Li cathode materials: Designing Li2MnxFe1−xSiO4 . Chem. Mater. 19, 3633–3640 (2007).

    Article  CAS  Google Scholar 

  11. Abouimrane, A., Armand, M. & Ravet, N. 203rd Meet. Electrochem. Soc. Ext. Abstr. (2003).

  12. Barker, J., Saidi, M. Y. & Swoyer, J. L. A Comparative investigation of the Li insertion properties of the novel fluorophosphate phases, NaVPO4F and LiVPO4F. J. Electrochem. Soc. 151, A1670–A1677 (2004).

    Article  CAS  Google Scholar 

  13. Barker, J., Saidi, M. Y., Gover, R. K. B., Burns, P. & Bryan, A. The effect of Al substitution on the lithium insertion properties of lithium vanadium fluorophosphate, LiVPO4F. J. Power Sources 174, 927–931 (2007).

    Article  CAS  Google Scholar 

  14. Ellis, B. L., Makahnouk, W. R. M, Makimura, Y., Toghill, K. & Nazar, L. F. A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries materials. Nature Mater. 6, 749–753 (2007).

    Article  CAS  Google Scholar 

  15. Pahdi, A. K., Manivannan, M. & Goodenough, J. B. Tuning the position of the redox couples in materials with NASICON structure by anionic substitution. J. Electrochem. Soc. 145, 1518–1520 (1998).

    Article  Google Scholar 

  16. Pahdi, A. K., Nanjundasvamy, K. S., Masquelier, C. & Goodenough, J. B. Mapping of transition metal redox energies in phosphates with Nasicon structure by lithium intercalation. J. Electrochem. Soc. 144, 2581–2586 (1997).

    Article  Google Scholar 

  17. Barker, J., Saidi, M. Y. & Swoyer, J. L. Lithium metal fluorophosphates materials and preparation thereof. US Patent 6,387,568 B1 (2002).

  18. Recham, N. et al. Ionothermal synthesis of Li-based fluorophosphates electrodes. Chem. Mater. 10.1021/cm9021497 (2009).

  19. Sebastian, L., Gopalakrishnan, J. & Piffard, Y. Synthesis crystal structure and lithium ion conductivity of LiMgFSO4 . J. Mater. Chem. 12, 374–377 (2002).

    Article  CAS  Google Scholar 

  20. Recham, N. et al. Ionothermal synthesis of tailor-made LiFePO4 powders for Li-ion battery applications. Chem. Mater. 21, 1096–1107 (2009).

    Article  CAS  Google Scholar 

  21. Recham, N. et al. Ionothermal synthesis of sodium-based fluorophosphate cathode materials. J. Electrochem. Soc. 156, A993 (2009).

    Article  CAS  Google Scholar 

  22. Boultif, A. & Louer, D. Powder pattern indexing with the dichotomy method. J. Appl. Crystallogr. 37, 724–731 (2004).

    Article  CAS  Google Scholar 

  23. Rodriguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192, 55–69 (1993).

    Article  CAS  Google Scholar 

  24. Favre-Nicolin, V. & Cerny, R. Free objects for crystallography: A modular approach to ab initio structure determination from powder pattern. J. Appl. Crystallogr. 35, 734–743 (2002); <http://objcryst.sourceforge.net>.

  25. Amin, R., Balaya, P. & Maier, J. Anisotropy of electronic and ionic transport in LiFePO4 . Electrochem. Solid State Lett. 10, A13–A16 (2007).

    Article  CAS  Google Scholar 

  26. Wildner, M. & Giester, G. The crystal structures of kieserite-type compounds. I. Crystal structures of Me(II) SO4*H2O, (M=Fe, Co, Ni, Zn). Neues JB Miner. Monat. 1991, 296–306 (1991).

    Google Scholar 

  27. Kiessling, F.-M. et al. Growth of GaAs crystals from Ga-rich melts by the VCz method without liquid encapsulation. J. Crystal Growth 269, 218–228 (2004).

    Article  CAS  Google Scholar 

  28. Doyle, M., Newman, J. & Reimers, J. A quick method of measuring the capacity versus discharge rate for a dual lithium-ion insertion cell undergoing cycling. J. Power Sources 52, 211–216 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank M. Courty for having carried out some of the TGA measurements, D. W. Murphy and P. Barpanda and members of ALISTORE-ERI for technical discussions, F. Wudl’s group at UCSB for their kindness in hosting the visits of J.-M.T. and W.W. and sharing their laboratory synthesis facilities as well as the materials research laboratory for using their XRD equipment.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W. Walker or J-M. Tarascon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 960 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Recham, N., Chotard, JN., Dupont, L. et al. A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries. Nature Mater 9, 68–74 (2010). https://doi.org/10.1038/nmat2590

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2590

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing