Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dissolution of insulating oxide materials at the molecular scale

Abstract

Our understanding of mineral and glass dissolution has advanced from simple thermodynamic treatments to models that emphasize adsorbate structures. This evolution was driven by the idea that the best understanding is built at the molecular level. Now, it is clear that the molecular questions cannot be answered uniquely with dissolution experiments. At the surface it is unclear which functional groups are present, how they are arranged, and how they interact with each other and with solutes as the key bonds are activated. An alternative approach has developed whereby reactions are studied with nanometre-sized aqueous oxide ions that serve as models for the more complicated oxide interface. For these ions, establishing the structure is not a research problem in itself, and bond ruptures and dissociations can be followed with much confidence. We review the field from bulk-dissolution kinetics to the new isotope-exchange experiments in large oxide ions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dissolution kinetics.
Figure 2: Rapid oxygen-isotope scrambling on the (012) surface of α-Fe2 18O3 following deposition of H2 16O.
Figure 3: The replacement of a metal-bound water with one from the bulk is the most fundamental interfacial reaction in aqueous solutions.
Figure 4: Oxygen-isotope-exchange pathways in [MO4Al12(OH)24(H2O)12]7/8+ cations (M = Al, Ga and Ge).
Figure 5: Oxygen-isotope-exchange pathways in the nanometre-sized decaniobate ([HxNb10O28](6−x)−) anion.
Figure 6: Pathways for isotope exchanges can be grouped into three related classes.

Similar content being viewed by others

References

  1. Blesa, M. A., Morando, P. J. & Regazzoni, A. E. Chemical Dissolution of Metal Oxides 432 (CRC Press, 1993).

    Google Scholar 

  2. Orme, C. A. et al. Formation of chiral morphologies through selective binding of amino acids to calcite surface steps. Nature 411, 775–779 (2001).

    CAS  Google Scholar 

  3. Cailleteau, C. et al. Insight into silicate-glass corrosion mechanisms. Nature Mater. 7, 978–983 (2008).

    CAS  Google Scholar 

  4. Eisenbarth, S. C., Colegio, O. R., O'Connor, W., Sutterwala, F. S. & Flavell, R. A. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453, 1122–1126 (2008).

    CAS  Google Scholar 

  5. Allouche, L., Gerardin, C., Loiseau, T., Ferey, G. & Taulelle, F. Al30: a giant aluminum polycation. Angew. Chem., Int. Ed. 39, 511–514 (2000).

    CAS  Google Scholar 

  6. Yanina, S. V. & Rosso, K. M. Linked reactivity at mineral-water interfaces through bulk crystal conduction. Science 320, 218–222 (2008).

    CAS  Google Scholar 

  7. Cesar, I., Kay, A., Gonzalez Martinez, J. A. & Grätzel, M. Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: nanostructure-directing effect of Si-doping. J. Am. Chem. Soc. 128, 4582–4583 (2006).

    CAS  Google Scholar 

  8. Furrer, G., Phillips, B. L., Ulrich, K. U., Pothig, R. & Casey, W. H. The origin of aluminum flocs in polluted streams. Science 297, 2245–2247 (2002).

    CAS  Google Scholar 

  9. Catalano, J. G., Fenter, P. & Park, C. Water ordering and surface relaxations at the haematite (110)-water interface. Geochim. Cosmochim. Acta 73, 2242–2251 (2009).

    CAS  Google Scholar 

  10. Zhang, Z. et al. Structure of rutile TiO2 (110) in water and 1 molal Rb+ at pH 12: Inter-relationship among surface charge, interfacial hydration structure, and substrate structural displacements. Surf. Sci. 601, 1129–1143 (2007).

    CAS  Google Scholar 

  11. Fenter, P. A., Rivers, M. L., Sturchio, N. C. & Sutton, S. R. (eds) Applications of Synchrotron Radiation in Low-Temperature Geochemistry and Environmental Sciences Vol. 49, 579 (Mineralogical Soc. America, 2002).

    Google Scholar 

  12. Hamilton, J. P., Pantano, C. G. & Brantley, S. L. Dissolution of albite glass and crystal. Geochim. Cosmochim. Acta 64, 2603–2615 (2000).

    CAS  Google Scholar 

  13. Casey, W. H. & Westrich, H. R. Control of dissolution rates of orthosilicate minerals by divalent metal-oxygen bonds. Nature 355, 157–159 (1992).

    CAS  Google Scholar 

  14. Bunker, B. C. Molecular mechanisms for corrosion of silica and silicate glasses. J. Non-Cryst. Solids 179, 300–308 (1994).

    CAS  Google Scholar 

  15. Bunker, B. C., Arnold, G. W., Beauchamp, E. K. & Day, D. E. Mechanisms for alkali leaching in mixed sodium-potassium silicate glasses. J. Non-Cryst. Solids 58, 295–322 (1983).

    CAS  Google Scholar 

  16. Casey, W. H., Westrich, H. R., Massis, T., Banfield, J. F. & Arnold, G. W. The surface of labradorite feldspar after acid hydrolysis. Chem. Geol. 7 8, 205–18 (1989).

    Google Scholar 

  17. Casey, W. H., Westrich, H. R., Banfield, J. F., Ferruzzi, G. & Arnold, G. W. Leaching and reconstruction at the surfaces of dissolving chain-silicate minerals. Nature 366, 253–256 (1993).

    CAS  Google Scholar 

  18. Asta, M. P., Cama, J., Soler, J. M., Arvidson, R. S. & Luttge, A. Interferometric study of pyrite surface reactivity in acidic conditions. Am. Mineral. 93, 508–519 (2008).

    CAS  Google Scholar 

  19. Green, E. & Luttge, A. Incongruent dissolution of wollastonite measured with vertical scanning interferometry. Am. Mineral. 91, 430–434 (2006).

    CAS  Google Scholar 

  20. Berner, R. A. & Holdren, G. R. Jr Mechanism of feldspar weathering. II. Observations of feldspars from soils. Geochim. Cosmochim. Acta 43, 1173–1186 (1979).

    CAS  Google Scholar 

  21. Berner, R. A. Rate control of mineral dissolution under earth surface conditions. Am. J. Sci. 278, 1235–1252 (1978).

    CAS  Google Scholar 

  22. Maher, K., Steefel, C. I., White, A. F. & Stonestrom, D. A. The role of reaction affinity and secondary minerals in regulating chemical weathering rates at the Santa Cruz Soil Chronosequence, California. Geochim. Cosmochim. Acta. 73, 2804–2831 (2009).

    CAS  Google Scholar 

  23. Michel, F. M. et al. The structure of ferrihydrite, a nanocrystalline material. Science 316, 1726–1729 (2007).

    CAS  Google Scholar 

  24. Casey, W. H. Dynamics and durability. Nature Mater. 7, 930–932 (2008).

    CAS  Google Scholar 

  25. Boudart, M. & Djega-Mariadasson, G. in Kinetics of Heterogeneous Catalytic Reactions (eds Brewer, L. & Prausnitz, J. M.) Ch. 3, 9–11 (Princeton Univ. Press, 1984).

    Google Scholar 

  26. Dove, P. M., Han, N. & De Yoreo, J. J. Mechanisms of classical crystal growth theory explain quartz and silicate dissolution behaviour. Proc. Natl Acad. Sci. USA 102, 15357–15362 (2005).

    CAS  Google Scholar 

  27. Burton, W. K., Cabrera, N. & Frank, F. C. Dislocations in crystal growth. Nature 163, 398–399 (1949).

    CAS  Google Scholar 

  28. Thomas, T. N., Land, T. A., Casey, W. H. & DeYoreo, J. J. Emergence of supersteps on KH2PO4 crystal surfaces. Phys. Rev. Lett. 92, 216103 (2004).

    CAS  Google Scholar 

  29. Furrer, G. & Stumm, W. The coordination chemistry of weathering: I. Dissolution kinetics of alumina and beryllium oxide. Geochim. Cosmochim. Acta 50, 1847–1860 (1986).

    CAS  Google Scholar 

  30. Zinder, B., Furrer, G. & Stumm, W. The coordination chemistry of weathering: II. Dissolution of iron(III) oxides. Geochim. Cosmochim. Acta 50, 1861–1869 (1986).

    CAS  Google Scholar 

  31. Koch, G. Kinetics and mechanism of the solution of beryllium oxide in acids. Ber. Bunsenges. Phys. Chem. 69, 141–145 (1965).

    CAS  Google Scholar 

  32. Loring, J. S., Sandstroem, M. H., Noren, K. & Persson, P. Rethinking arsenate coordination at the surface of goethite. Chem. Eur. J. 15, 5063–5072 (2009).

    CAS  Google Scholar 

  33. Boily, J.-F. & Felmy, A. R. On the protonation of oxo- and hydroxo-groups of the goethite (α-FeOOH) surface: A FTIR spectroscopic investigation of surface O–H stretching vibrations. Geochim. Cosmochim. Acta 72, 3338–3357 (2008).

    CAS  Google Scholar 

  34. Rochester, C. H. & Topham, S. A. Infrared study of the surface hydroxyl groups on goethite. J. Chem. Soc. Faraday Trans I 75, 591–602 (1979).

    CAS  Google Scholar 

  35. Bargar, J. R., Kubicki, J. D., Reitmeyer, R. & Davis, J. A. ATR-FTIR spectroscopic characterization of coexisting carbonate surface complexes on haematite. Geochim. Cosmochim. Acta 69, 1527–1542 (2005).

    CAS  Google Scholar 

  36. Sverjensky, D. A. Standard states for the activities of mineral surface sites and species. Geochim. Cosmochim. Acta 67, 17–28 (2003).

    CAS  Google Scholar 

  37. van Riemsdijk, W. H. & Hiemstra, T. The CD-MUSIC model as a framework for interpreting ion adsorption on metal (hydr)oxide surfaces. Interf. Sci. Tech. 11, 251–268 (2006).

    CAS  Google Scholar 

  38. Lasaga, A. C. Kinetic Theory in the Earth Sciences 728 (Princeton Univ. Press, 1998).

    Google Scholar 

  39. Gibbs, G. V. Molecules as models for bonding in silicates. Am. Mineral. 67, 421–450 (1982).

    CAS  Google Scholar 

  40. Rotzinger, F. P. Performance of molecular orbital methods and density functional theory in the computation of geometries and energies of metal aqua ions. J. Phys. Chem. B 109, 1510–1527 (2005).

    CAS  Google Scholar 

  41. Evans, R. J., Rustad, J. R. & Casey, W. H. Calculating geochemical reaction pathways - Exploration of the inner-sphere water exchange mechanism in Al(H2O)63+(aq) + nH2O with ab initio calculations and molecular dynamics. J. Phys. Chem. A 112, 4125–4140 (2008).

    CAS  Google Scholar 

  42. Brown, G. E. Jr et al. Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms. Chem. Rev. 99, 77–174 (1999).

    CAS  Google Scholar 

  43. Hochella, M. F. Jr in Mineral-Water Interface Geochemistry Vol. 23 (eds Hochella, M. F. Jr & White, A. F.) 87–132 (Mineralogical Soc. America, 1991).

    Google Scholar 

  44. Stirniman, M. J., Huang, C., Smith, R. S., Joyce, S. A. & Kay, B. D. The adsorption and desorption of water on single crystal MgO(100): The role of surface defects. J. Chem. Phys. 105, 1295–1298 (1996).

    CAS  Google Scholar 

  45. Guenard, P., Renaud, G., Barbier, A. & Gautier-Soyer, M. Determination of the α-Al2O3(0001) Surface relaxation and termination by measurements of crystal truncation rods. Surf. Rev. Lett. 5, 321–324 (1998).

    CAS  Google Scholar 

  46. Stanka, B., Hebenstreit, W., Diebold, U. & Chambers, S. A. Surface reconstruction of Fe3O4(001). Surf. Sci. 448, 49–63 (2000).

    CAS  Google Scholar 

  47. Joseph, Y., Ranke, W. & Weiss, W. Water on FeO(111) and Fe3O4(111): Adsorption behaviour on different surface terminations. J. Phys. Chem. B 104, 3224–3236 (2000).

    CAS  Google Scholar 

  48. Thevuthasan, S. et al. Surface structure of MBE-grown α-Fe2O3(0001) by intermediate-energy X-ray photoelectron diffraction. Surf. Sci. 425, 276–286 (1999).

    CAS  Google Scholar 

  49. Henderson, M. A., Joyce, S. A. & Rustad, J. R. Interaction of water with the (1×1) and (2×1) surfaces of α-Fe2O3(012). Surf. Sci. 417, 66–81 (1998).

    CAS  Google Scholar 

  50. Henderson, M. A. An HREELS and TPD study of water on TiO2(110): The extent of molecular versus dissociative adsorption. Surf. Sci. 355, 151–166 (1996).

    CAS  Google Scholar 

  51. Wang, Y., Nguyen, H. N. & Truong, T. N. Mechanisms of and effect of coadsorption on water dissociation on an oxygen vacancy of the MgO(100) surface. Chem. Eur. J. 12, 5859–5867 (2006).

    CAS  Google Scholar 

  52. Kowalski, P. M., Meyer, B. & Marx, D. Composition, structure, and stability of the rutile TiO2(110) surface: Oxygen depletion, hydroxylation, hydrogen migration, and water adsorption. Phys. Rev. B. 79, 115410–115411 (2009).

    Google Scholar 

  53. Wang, X. G. et al. The haematite (α-Fe2O3) (0001) surface: Evidence for domains of distinct chemistry. Phys. Rev. Lett. 81, 1038–1041 (1998).

    Google Scholar 

  54. Brudvig, G. W. Water oxidation chemistry of photosystem II. Phil. Trans. R. Soc. B 363, 1211–1219 (2008).

    CAS  Google Scholar 

  55. Xu, Y., Feng, L., Jeffrey Philip, D., Shi, Y. & Morel Francois, M. M. Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature 452, 56–61 (2008).

    CAS  Google Scholar 

  56. Casey, W. H. & Swaddle, T. W. Why small? The use of small inorganic clusters to understand mineral surface and dissolution reactions in geochemistry. Rev. Geophys. 41, 4/1–4/20 (2003).

    CAS  Google Scholar 

  57. Powell, A. K. Polyiron oxides, oxyhydroxides and hydroxides as models for biomineralization processes. Struct. Bond. 88, 1–38 (1997).

    CAS  Google Scholar 

  58. Richens, D. T. Ligand substitution reactions at inorganic centers. Chem. Rev. 105, 1961–2002 (2005).

    CAS  Google Scholar 

  59. Rotzinger, F. P. Treatment of substitution and rearrangement mechanisms of transition metal complexes with quantum chemical methods. Chem. Rev. 105, 2003–2037 (2005).

    CAS  Google Scholar 

  60. Erras-Hanauer, H., Clark, T. & van Eldik, R. Molecular orbital and DFT studies on water exchange mechanisms of metal ions. Coord. Chem. Rev. 238–239, 233–253 (2003).

    Google Scholar 

  61. Wang, J., Rustad, J. R. & Casey, W. H. Calculation of water-exchange rates on aqueous polynuclear clusters and at oxide-water interfaces. Inorg. Chem. 46, 2962–2964 (2007).

    CAS  Google Scholar 

  62. Stack, A. G. & Rustad, J. R. Structure and dynamics of water on aqueous barium ion and the {001} barite surface. J. Phys. Chem. C 111, 16387–16391 (2007).

    CAS  Google Scholar 

  63. Catalano, J. G., Park, C., Zhang, Z. & Fenter, P. Termination and water adsorption at the α-Al2O3 (012)-aqueous solution interface. Langmuir 22, 4668–4673 (2006).

    CAS  Google Scholar 

  64. Catalano, J. G., Fenter, P. & Park, C. Interfacial water structure on the (012) surface of haematite: Ordering and reactivity in comparison with corundum. Geochim. Cosmochim. Acta 71, 5313–5324 (2007).

    CAS  Google Scholar 

  65. Nangia, S. & Garrison, B. J. Reaction rates and dissolution mechanisms of quartz as a function of pH. J. Phys. Chem. A 112, 2027–2033 (2008).

    CAS  Google Scholar 

  66. Xiao, Y. & Lasaga, A. C. Ab initio quantum mechanical studies of the kinetics and mechanisms of quartz dissolution: OH catalysis. Geochim. Cosmochim. Acta 60, 2283–2295 (1996).

    CAS  Google Scholar 

  67. Xiao, Y. & Lasaga, A. C. Ab initio quantum mechanical studies of the kinetics and mechanisms of silicate dissolution: H+(H3O+) catalysis. Geochim. Cosmochim. Acta 58, 5379–5400 (1994).

    CAS  Google Scholar 

  68. Kubicki, J. D., Blake, G. A. & Apitz, S. E. Ab initio calculations on aluminosilicate Q3 species: implications for atomic structures of mineral surfaces and dissolution mechanisms of feldspars. Am. Mineral. 81, 789–799 (1996).

    CAS  Google Scholar 

  69. Criscenti, L. J., Kubicki, J. D. & Brantley, S. L. Silicate glass and mineral dissolution: Calculated reaction paths and activation energies for hydrolysis of a Q3 Si by H3O+ using ab initio methods. J. Phys. Chem. A 110, 198–206 (2006).

    CAS  Google Scholar 

  70. Bradley, S. M., Kydd, R. A. & Howe, R. F. The structure of Al gels formed through the base hydrolysis of Al3+ aqueous solutions. J. Colloid Interface Sci. 159, 405–412 (1993).

    CAS  Google Scholar 

  71. Bradley, S. M., Kydd, R. A. & Brandt, K. K. Pillared clay minerals as catalysts and catalyst supports. Stud. Surf. Sci. Catal. 73, 287–290 (1992).

    CAS  Google Scholar 

  72. Amirbahman, A., Gfeller, M. & Furrer, G. Kinetics and mechanism of ligand-promoted decomposition of the Keggin Al13 polymer. Geochim. Cosmochim. Acta 64, 911–919 (2000).

    CAS  Google Scholar 

  73. Casey, W. H. Large aqueous aluminum-hydroxide molecules. Chem. Rev. 106, 1–16 (2006).

    CAS  Google Scholar 

  74. Rustad, J. R., Loring, J. S. & Casey, W. H. Oxygen-exchange pathways in aluminum polyoxocations. Geochim. Cosmochim. Acta 68, 3011–3017 (2004).

    CAS  Google Scholar 

  75. Villa, E. M. et al. Reaction dynamics of the decaniobate ([HxNb10O28](6−x)−) ion in water. Angew. Chem. Int. Ed. 47, 4844–4846 (2008).

    CAS  Google Scholar 

  76. Comba, P. & Helm, L. The solution structure and reactivity of decavanadate. Helv. Chim. Acta 71, 1406–1420 (1988).

    CAS  Google Scholar 

  77. Mega, T. L., Cortes, S. & Van Etten, R. L. The oxygen-18 isotope shift in carbon-13 nuclear magnetic resonance spectroscopy. 13. Oxygen exchange at anomeric carbon of D-glucose, D-mannose and D-fructose. J. Org. Chem. 55, 522–528 (1990).

    CAS  Google Scholar 

  78. Mega, T. L. & Van Etten, R. L. Oxygen exchange and bond cleavage reactions of carbohydrates studied using the oxygen-18 isotope shift in carbon-13 NMR spectroscopy. Basic Life Sci. 56, 85–93 (1990).

    CAS  Google Scholar 

  79. Bolhuis, P. G., Chandler, D., Dellago, C. & Geissler, P. L. Transition path sampling: throwing ropes over rough mountain passes, in the dark. Ann. Rev. Phys. Chem. 53, 291–318 (2002).

    CAS  Google Scholar 

  80. Antonio, M. R., Nyman, M. & Anderson, T. M. Direct observation of contact ion-pair formation in aqueous solution. Angew. Chem. Int. Ed. 48, 6136–6140 (2009).

    CAS  Google Scholar 

  81. Villa, E. M., Ohlin, C. A., Rustad, J. R. & Casey, W. H. Isotope-exchange dynamics in isostructural decametalates with profound differences in reactivity. J. Am. Chem. Soc. 131, 16488–16492 (2009).

    CAS  Google Scholar 

  82. Ohlin, C. A., Villa, E. M., Fettinger, J. C. & Casey, W. H. A new titanoniobate ion-completing the series [Nb10O28]6, [TiNb9O28]7− and [Ti2Nb8O28]8. Dalton T. 15, 2677–2678 (2009).

    Google Scholar 

  83. Casey, W. H. On the relative dissolution rates of some oxide and orthosilicate minerals. J. Colloid Interface Sci. 146, 586–589 (1991).

    CAS  Google Scholar 

  84. Rowsell, J. & Nazar, L. F. Speciation and thermal transformation in alumina sols: Structures of the polyhydroxyoxoaluminum cluster [Al30O8(OH)56(H2O)26]18+ and its δ-Keggin moiety. J. Am. Chem. Soc. 122, 3777–3778 (2000).

    CAS  Google Scholar 

  85. Müller, A., Diemann, E., Shah, S. Q. N., Kuhlmann, C. & Letzel Matthias, C. Soccer-playing metal oxide giant spheres: a first step towards patterning structurally well-defined nano-object collectives. Chem Commun. 440–441 (2002).

  86. Balogh, E., Todea, A. M., Muller, A. & Casey, W. H. Rates of ligand exchange between >FeIII-OH2 functional groups on a nanometer-size aqueous cluster and bulk solution. Inorg. Chem. 46, 7087–7092 (2007).

    CAS  Google Scholar 

  87. Houston, J. R., Richens, D. T. & Casey, W. H. Distinct water-exchange mechanisms for similar trinuclear transition-metal clusters. Inorg. Chem. 45, 7962–7967 (2006).

    CAS  Google Scholar 

  88. Houston, J. R., Olmstead, M. O. & Casey, W. H. Substituent effects in five oxo-centered Rh(III) trimers. Inorg. Chem. 45, 7799–7805 (2006).

    CAS  Google Scholar 

Download references

Acknowledgements

Support for this research came from the National Science Foundation via grant EAR 05015600 and from the US Department of Energy Office of Basic Energy Science via grant numbers DE-FG03-96ER 14629 and DE-FG03-02ER15693. Special thanks also goes to Phil Power who encouraged us to propose this article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to James R. Rustad or William H. Casey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohlin, C., Villa, E., Rustad, J. et al. Dissolution of insulating oxide materials at the molecular scale. Nature Mater 9, 11–19 (2010). https://doi.org/10.1038/nmat2585

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2585

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing