Article | Published:

Size and shape effects on the order–disorder phase transition in CoPt nanoparticles

Nature Materials volume 8, pages 940946 (2009) | Download Citation

Subjects

Abstract

Chemically ordered bimetallic nanoparticles are promising candidates for magnetic-storage applications. However, the use of sub-10 nm nanomagnets requires further study of possible size effects on their physical properties. Here, the effects of size and morphology on the order–disorder phase transition temperature of CoPt nanoparticles (TCNP) have been investigated experimentally, using transmission electron microscopy, and theoretically, with canonical Monte Carlo simulations. For 2.4–3-nm particles, TCNP is found to be 325–175 C lower than the bulk material transition temperature, consistent with our Monte Carlo simulations. Furthermore, we establish that TCNP is also sensitive to the shape of the nanoparticles, because only one dimension of the particle (that is, in-plane size or thickness) smaller than 3 nm is sufficient to induce a considerable depression of TCNP. This work emphasizes the necessity of taking into account the three-dimensional morphology of nano-objects to understand and control their structural properties.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & The Physics of Ultra-High-Density Magnetic Recording (Springer, 2001).

  2. 2.

    , & Nanostructured magnetic films for extremely high density recording. Nanostruct. Mater. 12, 1021–1026 (1999).

  3. 3.

    , & Nanostructure and magnetic properties of composite CoPt:C films for extremely high-density recording. J. Appl. Phys. 87, 6959–6961 (2000).

  4. 4.

    , , & Magnetic nanostructures. Adv. Phys. 47, 511–597 (1998).

  5. 5.

    & Thermal effect limits in ultrahigh-density magnetic recording. IEEE Trans. Magn. 35, 4423–4439 (1999).

  6. 6.

    , , , & Magnetic and structural properties of Co–Pt perpendicular recording media with large magnetic anisotropy. J. Magn. Magn. Mater. 287, 229–233 (2005).

  7. 7.

    , , , & Magnetic hardening and coercivity mechanisms in L10 ordered FePd ferromagnets. Scr. Metallurg. Mater. 33, 1793–1805 (1995).

  8. 8.

    First principle calculation of the magnetocrystalline anisotropy energy of FePt and CoPt ordered alloys. J. Phys. Soc. Jpn 63, 3053–3058 (1994).

  9. 9.

    et al. CoPt and FePt thin films for high density recording media. J. Appl. Phys. 87, 6938–6940 (2000).

  10. 10.

    , & Fabrication of oriented L10–FePt and FePd nanoparticles with large coercivity. J. Appl. Phys. 91, 8516–8518 (2002).

  11. 11.

    & Magnetoanisotropy, long-range order parameter and thermal stability of isolated L10 FePt nanoparticles with mutual fixed orientation. J. Magn. Magn. Mater. 272–276, 1497–1499 (2004).

  12. 12.

    & Effect of cluster size on the chemical ordering in nanometer-sized Au-75 at.%Cu alloy clusters. Z. Für Phys. D 37, 181–186 (1996).

  13. 13.

    et al. Size effect on the ordering of L10 FePt nanoparticles. Phys. Rev. B 72, 144419 (2005).

  14. 14.

    , , & Size effect on the ordering of FePt granular films. J. Appl. Phys. 93, 7166–7168 (2003).

  15. 15.

    , , , & Long-range order parameter of single L10–FePd nanoparticle determined by nanobeam electron diffraction: Particle size dependence of the order parameter. J. Appl. Phys. 98, 024308 (2005).

  16. 16.

    , , , & The nature of A1–L10 ordering transitions in alloy nanoparticles: A Monte Carlo study. Acta Mater. 54, 4201–4211 (2006).

  17. 17.

    & Temperature and particle-size dependence of the equilibrium order parameter of FePt alloys. Phys. Rev. B 72, 134205 (2005).

  18. 18.

    & Lattice Monte Carlo simulations of FePt nanoparticles: Influence of size, composition, and surface segregation on order–disorder phenomena. Phys. Rev. B 72, 094203 (2005).

  19. 19.

    et al. Model predictions and experimental characterization of Co–Pt alloy clusters. Eur. Phys. J. D 43, 27–32 (2007).

  20. 20.

    & Metropolis Monte Carlo predictions of free Co–Pt nanoclusters. J. Alloys Compounds 434–435, 550–554 (2007).

  21. 21.

    , & Origin of the complex wetting behaviour in Co–Pt alloys. Phys. Rev. B 68, 224203 (2003).

  22. 22.

    , & Phase transformation, coalescence, and twinning of monodisperse FePt nanocrystals. Nano Lett. 1, 443–447 (2001).

  23. 23.

    , , , & Structural characteristics and magnetic properties of chemically synthesized CoPt nanoparticles. Appl. Phys. Lett. 81, 3768–3770 (2002).

  24. 24.

    , , , & Coupled Co–Pt nanoparticles in C matrix. Mater. Sci Eng. B 103, 118–121 (2003).

  25. 25.

    , & Clustering on surfaces. Surf. Sci. Rep. 16, 377–463 (1992).

  26. 26.

    , , , & A TEM in situ experiment as a guideline for the synthesis of as-grown ordered CoPt nanoparticles. Nanotechnology 18, 375301 (2007).

  27. 27.

    et al. STEM nanodiffraction technique for structural analysis of CoPt nanoparticles. Ultramicroscopy 108, 656–662 (2008).

  28. 28.

    , & Thermodynamical and structural properties of fcc transition metals using a simple tight-binding model. Phil. Mag. A 59, 321–336 (1989).

  29. 29.

    , & Structure and chemical ordering in CoPt nanoalloys. Faraday Discuss. 138, 193–210 (2008).

  30. 30.

    et al. Evidence of L10 chemical order in CoPt nanoclusters: Direct observation and magnetic signature. Phys. Rev. B 77, 144411 (2008).

  31. 31.

    et al. Growth and structural properties of CuAg and CoPt bimetallic nanoparticles. Faraday Discuss. 138, 375–391 (2008).

  32. 32.

    et al. On the L10 ordering kinetics in Fe–Pt nanoparticles. IEEE Trans. Magn. 42, 3048 (2006).

  33. 33.

    et al. Comparing electron tomography and HRTEM slicing methods as tools to measure the thickness of nanoparticles. Ultramicroscopy 109, 788–796 (2009).

  34. 34.

    & The quantitative analysis of thin specimen. J. Microsc. 1032, 203–207 (1975).

  35. 35.

    The parameterless correction method in X-ray microanalysis. Microsc. Microanal. Microstruct. 1, 1–22 (1990).

Download references

Acknowledgements

We are grateful to Region Ile-de-France for convention SESAME 2000 E1435, for the support of the JEOL 2100F electron microscope installed at IMPMC (UMR 7590).

Author information

Author notes

    • D. Alloyeau

    Present address : Lawrence Berkeley National Laboratory (LBNL), National Center for Electron Microscopy (NCEM), 1 Cyclotron Road-MS, 72 Berkeley, California 94720, USA

Affiliations

  1. Laboratoire Matériaux et Phénomènes Quantiques, Université Paris 7/CNRS, Bâtiment Condorcet, 4 rue Elsa Morante, 75205 Paris Cedex 13, France

    • D. Alloyeau
    • , C. Ricolleau
    • , T. Oikawa
    • , C. Langlois
    •  & N. Braidy
  2. Laboratoire d’Etude des Microstructures—ONERA/CNRS, B.P. 72, 92322 Châtillon, France

    • D. Alloyeau
    • , Y. Le Bouar
    • , N. Braidy
    •  & A. Loiseau
  3. Centre Interdisciplinaire de Nanosciences de Marseille, CNRS, Campus de Luminy, Case 913, 13288 Marseille Cedex 9, France

    • C. Mottet
  4. JEOL Ltd, 1-2 Musashino 3-Chome, Akishima, Tokyo 196-8558, Japan

    • T. Oikawa

Authors

  1. Search for D. Alloyeau in:

  2. Search for C. Ricolleau in:

  3. Search for C. Mottet in:

  4. Search for T. Oikawa in:

  5. Search for C. Langlois in:

  6. Search for Y. Le Bouar in:

  7. Search for N. Braidy in:

  8. Search for A. Loiseau in:

Contributions

D.A. prepared the samples. D.A., C.R. and T.O. developed the STEM/NBD technique and carried out the TEM experiments. D.A. analysed the experimental data. C.M. carried out the Monte Carlo simulations and described them in the article. C.R., Y.L.B., C.L. and A.L. supervised the project. D.A. and C.R. prepared the manuscript. N.B. contributed to the energy-dispersive X-ray data analysis and improved the writing of the article. All authors discussed the results and implications and commented on the manuscript at all stages.

Corresponding author

Correspondence to D. Alloyeau.

Supplementary information

Videos

  1. 1.

    Supplementary Information

    Supplementary Movie

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nmat2574

Further reading