Subjects

Abstract

Doping of semiconductor nanocrystals by transition-metal ions has attracted tremendous attention owing to their nanoscale spintronic applications. Such doping is, however, difficult to achieve in low-dimensional strongly quantum confined nanostructures by conventional growth procedures. Here we demonstrate that the incorporation of manganese ions up to 10% into CdSe quantum nanoribbons can be readily achieved by a nucleation-controlled doping process. The cation-exchange reaction of (CdSe)13 clusters with Mn2+ ions governs the Mn2+ incorporation during the nucleation stage. This highly efficient Mn2+ doping of the CdSe quantum nanoribbons results in giant exciton Zeeman splitting with an effective g-factor of 600, the largest value seen so far in diluted magnetic semiconductor nanocrystals. Furthermore, the sign of the sd exchange is inverted to negative owing to the exceptionally strong quantum confinement in our nanoribbons. The nucleation-controlled doping strategy demonstrated here thus opens the possibility of doping various strongly quantum confined nanocrystals for diverse applications.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & Doped nanocrystals. Science 319, 1776–1779 (2008).

  2. 2.

    & PbSe nanocrystals solids for n- and p-channel thin film field-effect transistors. Science 310, 86–89 (2005).

  3. 3.

    & n-type colloidal semiconductor nanocrystals. Nature 407, 981–983 (2000).

  4. 4.

    , & n-type conducting CdSe nanocrystal solids. Science 300, 1277–1280 (2003).

  5. 5.

    et al. One-dimensional nanostructures: Synthesis, characterization and applications. Adv. Mater. 15, 353–389 (2003).

  6. 6.

    , , , & Two- versus three-dimensional quantum confinement in indium phosphide wires and dots. Nature Mater. 2, 517–520 (2003).

  7. 7.

    , , & Control of thickness and orientation of solution-grown silicon nanowires. Science 287, 1471–1473 (2000).

  8. 8.

    & Diluted Magnetic Semiconductors; Semiconductors and Semimetals (Academic, 1988).

  9. 9.

    & Spin dynamics and quantum transport in magnetic semiconductor quantum structures. J. Magn. Magn. Mater. 200, 130–147 (1999).

  10. 10.

    et al. Electric-field control of ferromagnetism. Nature 408, 944–946 (2000).

  11. 11.

    , & Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

  12. 12.

    & Doped semiconductor nanocrystals: Synthesis, characterization, physical properties and applications. Prog. Inorg. Chem. 54, 47–126 (2005).

  13. 13.

    et al. Giant internal magnetic fields in Mn doped nanocrystal quantum dots. Solid State Commun. 114, 547–550 (2000).

  14. 14.

    , , , & Magnetoresistance of n-type quantum dot solids. Appl. Phys. Lett. 88, 072504–072505 (2006).

  15. 15.

    , & Magnetotransport of Co-doped ZnO nanowires. Nano Lett. 9, 892–896 (2009).

  16. 16.

    Semiconductor and Metal Nanocrystals (Dekker, 2004).

  17. 17.

    & Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437, 664–670 (2005).

  18. 18.

    , , , & Synthesis of monodisperse spherical nanocrystals. Angew. Chem. Int. Ed. 46, 4630–4660 (2007).

  19. 19.

    , & Synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

  20. 20.

    et al. Shape control of CdSe nanocrystals. Nature 404, 59–61 (2000).

  21. 21.

    , , , & Self-assembly of CdTe nanocrystals into free-floating sheets. Science 314, 274–278 (2006).

  22. 22.

    et al. Spontaneous superlattice formation in nanorods through partial cation exchange. Science 317, 355–358 (2007).

  23. 23.

    , , & High-quality manganese-doped ZnSe nanocrystals. Nano Lett. 1, 3–7 (2001).

  24. 24.

    , & Magnetic ordering in doped Cd1−xCoxSe diluted magnetic quantum dots. J. Am. Chem. Soc. 124, 11495–11502 (2002).

  25. 25.

    , , & Synthesis and characterization of diluted magnetic semiconductor manganese-doped indium arsenide nanocrystals. Nano Lett. 3, 1441–1447 (2003).

  26. 26.

    , , , & Magnetic quantum dots: Synthesis, spectroscopy, and magnetism of Co2+- and Ni2+-doped ZnO nanocrystals. J. Am. Chem. Soc. 125, 13205–13218 (2003).

  27. 27.

    , , , & Impact of ripening on manganese-doped ZnSe nanocrystals. Nano Lett. 6, 334–340 (2006).

  28. 28.

    , , , & Switching-on superparamagnetism in Mn/CdSe quantum dots. J. Am. Chem. Soc. 128, 2931–2939 (2006).

  29. 29.

    , , & On doping CdS/ZnS core/shell nanocrystals with Mn. J. Am. Chem. Soc. 130, 15649–15661 (2008).

  30. 30.

    , , & An alternative of CdSe nanocrystal emitters: Pure and tunable impurity emissions in ZnSe nanocrystals. J. Am. Chem. Soc. 127, 17586–17587 (2005).

  31. 31.

    et al. Organometallic synthesis and spectroscopic characterization of manganese-doped CdSe nanocrystals. J. Am. Chem. Soc. 122, 2532–2540 (2000).

  32. 32.

    et al. Doping semiconductor nanocrystals. Nature 436, 91–94 (2005).

  33. 33.

    , , & Size-dependent optical spectroscopy of a homologous series of CdSe cluster molecules. J. Am. Chem. Soc. 123, 2354–2364 (2001).

  34. 34.

    , , , & Transition-metal doped zinc oxide nanowires. Angew. Chem. Int. Ed. 45, 420–423 (2006).

  35. 35.

    , & Highly luminescent ultranarrow Mn doped ZnSe nanowires. Nano Lett. 9, 745–750 (2009).

  36. 36.

    et al. Kinetic exchange between the conduction band electrons and magnetic ions in quantum-confined structures. Phys. Rev. Lett. 83, 1431–1434 (1999).

  37. 37.

    , , , & Antiferromagnetic sd exchange coupling in GaMnAs. Phys. Rev. Lett. 95, 017204 (2005).

  38. 38.

    Confinement-induced reduction of the effective exchange parameters in semimagnetic semiconductor nanostructures. Phys. Rev. B 58, 15660–15665 (1998).

  39. 39.

    , , , & Low-temperature solution-phase synthesis of quantum well structured CdSe nanoribbons. J. Am. Chem. Soc. 128, 5632–5633 (2006).

  40. 40.

    et al. Ultra-stable nanoparticles of CdSe revealed from mass spectrometry. Nature Mater. 3, 99–102 (2004).

  41. 41.

    , , , & Surface ligand dynamics in growth of nanocrystals. J. Am. Chem. Soc. 129, 9500–9509 (2007).

  42. 42.

    , & Trapped-dopant model of doping in semiconductor nanocrystals. Nano Lett. 8, 2878–2882 (2008).

  43. 43.

    , , & Luminescence of nanocrystalline ZnSe:Mn2+. Phys. Chem. Chem. Phys. 2, 5445–5448 (2000).

  44. 44.

    , , , & Magnetic circular dichroism study of CdSe quantum dots. J. Chem. Phys. 108, 4242–4247 (1998).

  45. 45.

    et al. Spin-polarizable excitonic luminescence in colloidal Mn2+-doped CdSe quantum dots. Nano Lett. 8, 1197–1201 (2008).

  46. 46.

    , & Spin properties of self-organized diluted magnetic Cd1−xMnxSe quantum dots. Phys. Rev. B 69, 121309 (2004).

  47. 47.

    Low-dimensional structures of diluted magnetic (semimagnetic) semiconductors-a subjective review. Acta Phys. Pol. A 100, 111–138 (2001).

  48. 48.

    et al. Tunable magnetic exchange interactions in manganese-doped inverted core–shell ZnSe–CdSe nanocrystals. Nature Mater. 8, 35–40 (2009).

  49. 49.

    et al. Magneto-optic study of the interface in semimagnetic semiconductor heterostructures: Intrinsic effect and interface profile in CdTe–Cd1−xMnxTe. Phys. Rev. B 53, 4891–4904 (1996).

  50. 50.

    & Self-purification in semiconductor nanocrystals. Phys. Rev. Lett. 96, 226802 (2006).

Download references

Acknowledgements

We would like to thank the National Creative Research Initiative Program (T.H. and J.P.) and the World Class University Program (T.H. and J.P.) of the Korean Ministry of Education, Science and Technology, the US National Science Foundation (J.K.F.) and the Robert A. Welch Foundation (G.S.H.) for financial support. We gratefully acknowledge the Texas Advanced Computing Center for use of their computing resources. We thank M.-S. Won in Korea Basic Science Institute for the EPR characterization. We also thank K. Ando for the preliminary study on MCD. J.H.Y. has benefited from a Seoul Science Fellowship.

Author information

Author notes

    • Jung Ho Yu
    •  & Xinyu Liu

    These authors contributed equally to this work

Affiliations

  1. National Creative Research Initiative Center for Oxide Nanocrystalline Materials and School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, Korea

    • Jung Ho Yu
    • , Jin Joo
    • , Dong Won Lee
    • , Jae Sung Son
    •  & Taeghwan Hyeon
  2. Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556-5670, USA

    • Xinyu Liu
    • , Shaoping Shen
    • , Kritsanu Tivakornsasithorn
    • , Margaret Dobrowolska
    •  & Jacek K. Furdyna
  3. Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712-0231, USA

    • Kyoung Eun Kweon
    •  & Gyeong S. Hwang
  4. Department of Materials Science & Engineering, Seoul National University, Seoul 151-744, Korea

    • Jiwon Park
    •  & Young-Woon Kim
  5. NCRI Center for Cross-coupled Complex Materials Research & Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Korea

    • Kyung-Tae Ko
    •  & Jae-Hoon Park
  6. Permanent Address: Department of Applied Chemistry, Kyungpook National University, Daegu 702-701, Korea

    • Jin Joo

Authors

  1. Search for Jung Ho Yu in:

  2. Search for Xinyu Liu in:

  3. Search for Kyoung Eun Kweon in:

  4. Search for Jin Joo in:

  5. Search for Jiwon Park in:

  6. Search for Kyung-Tae Ko in:

  7. Search for Dong Won Lee in:

  8. Search for Shaoping Shen in:

  9. Search for Kritsanu Tivakornsasithorn in:

  10. Search for Jae Sung Son in:

  11. Search for Jae-Hoon Park in:

  12. Search for Young-Woon Kim in:

  13. Search for Gyeong S. Hwang in:

  14. Search for Margaret Dobrowolska in:

  15. Search for Jacek K. Furdyna in:

  16. Search for Taeghwan Hyeon in:

Contributions

J.H.Y., X.L., J.K.F. and T.H. designed and carried out experiments, analysed data and wrote the manuscript. K.E.K. and G.S.H. carried out the quantum mechanical calculations and described the results. J.H.Y., J.J., D.W.L. and J.S.S. carried out the synthesis of the materials. J.P. and Y.-W.K. carried out TEM measurements. K.-T.K. and J.-H.P. conducted XAS and EXAFS. X.L., S.S., K.T., M.D. and J.K.F. carried out magneto-optical experiments and interpreted the data. All authors have reviewed, discussed and approved the results and conclusions of this article.

Corresponding authors

Correspondence to Jacek K. Furdyna or Taeghwan Hyeon.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nmat2572

Further reading