Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Giant Zeeman splitting in nucleation-controlled doped CdSe:Mn2+ quantum nanoribbons

Abstract

Doping of semiconductor nanocrystals by transition-metal ions has attracted tremendous attention owing to their nanoscale spintronic applications. Such doping is, however, difficult to achieve in low-dimensional strongly quantum confined nanostructures by conventional growth procedures. Here we demonstrate that the incorporation of manganese ions up to 10% into CdSe quantum nanoribbons can be readily achieved by a nucleation-controlled doping process. The cation-exchange reaction of (CdSe)13 clusters with Mn2+ ions governs the Mn2+ incorporation during the nucleation stage. This highly efficient Mn2+ doping of the CdSe quantum nanoribbons results in giant exciton Zeeman splitting with an effective g-factor of 600, the largest value seen so far in diluted magnetic semiconductor nanocrystals. Furthermore, the sign of the sd exchange is inverted to negative owing to the exceptionally strong quantum confinement in our nanoribbons. The nucleation-controlled doping strategy demonstrated here thus opens the possibility of doping various strongly quantum confined nanocrystals for diverse applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis and characterization of CdSe:Mn2+ quantum nanoribbons.
Figure 2: Spectroscopic investigation of the process of formation and Mn2+ doping of CdSe quantum ribbons.
Figure 3: Theoretical investigation of Mn2+ doping of CdSe clusters.
Figure 4: MCD spectra and corresponding Zeeman splittings of CdSe:Mn2+ quantum ribbons.

Similar content being viewed by others

References

  1. Norris, D. J., Efros, A. L. & Erwin, S. C. Doped nanocrystals. Science 319, 1776–1779 (2008).

    Article  CAS  Google Scholar 

  2. Talapin, D. V. & Murray, C. B. PbSe nanocrystals solids for n- and p-channel thin film field-effect transistors. Science 310, 86–89 (2005).

    Article  CAS  Google Scholar 

  3. Shim, M. & Guyot-Sionnest, P. n-type colloidal semiconductor nanocrystals. Nature 407, 981–983 (2000).

    Article  CAS  Google Scholar 

  4. Yu, D., Wang, C. & Guyot-Sionnest, P. n-type conducting CdSe nanocrystal solids. Science 300, 1277–1280 (2003).

    Article  CAS  Google Scholar 

  5. Xia, Y. et al. One-dimensional nanostructures: Synthesis, characterization and applications. Adv. Mater. 15, 353–389 (2003).

    Article  CAS  Google Scholar 

  6. Yu, H., Li, J., Loomis, R. A., Wang, L.-W. & Buhro, W. E. Two- versus three-dimensional quantum confinement in indium phosphide wires and dots. Nature Mater. 2, 517–520 (2003).

    Article  CAS  Google Scholar 

  7. Holmes, J. D., Johnston, K. P., Doty, C. & Korgel, B. A. Control of thickness and orientation of solution-grown silicon nanowires. Science 287, 1471–1473 (2000).

    Article  CAS  Google Scholar 

  8. Furdyna, J. K. & Kossut, J. Diluted Magnetic Semiconductors; Semiconductors and Semimetals (Academic, 1988).

    Google Scholar 

  9. Awschalom, D. D. & Samarth, N. Spin dynamics and quantum transport in magnetic semiconductor quantum structures. J. Magn. Magn. Mater. 200, 130–147 (1999).

    Article  CAS  Google Scholar 

  10. Ohno, H. et al. Electric-field control of ferromagnetism. Nature 408, 944–946 (2000).

    Article  CAS  Google Scholar 

  11. Zutic, I., Fabian, J. & Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  CAS  Google Scholar 

  12. Bryan, J. D. & Gamelin, D. R. Doped semiconductor nanocrystals: Synthesis, characterization, physical properties and applications. Prog. Inorg. Chem. 54, 47–126 (2005).

    Article  CAS  Google Scholar 

  13. Hoffman, D. M. et al. Giant internal magnetic fields in Mn doped nanocrystal quantum dots. Solid State Commun. 114, 547–550 (2000).

    Article  CAS  Google Scholar 

  14. Yu, D., Wehrenberg, B. L., Yang, I., Kang, W. & Guyot-Sionnest, P. Magnetoresistance of n-type quantum dot solids. Appl. Phys. Lett. 88, 072504–072505 (2006).

    Article  Google Scholar 

  15. Liang, W., Yuhas, B. D. & Yang, P. Magnetotransport of Co-doped ZnO nanowires. Nano Lett. 9, 892–896 (2009).

    Article  CAS  Google Scholar 

  16. Klimov, V. I. Semiconductor and Metal Nanocrystals (Dekker, 2004).

    Google Scholar 

  17. Yin, Y. & Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437, 664–670 (2005).

    Article  CAS  Google Scholar 

  18. Park, J., Joo, J., Kwon, S. G., Jang, Y. & Hyeon, T. Synthesis of monodisperse spherical nanocrystals. Angew. Chem. Int. Ed. 46, 4630–4660 (2007).

    Article  CAS  Google Scholar 

  19. Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

    Article  CAS  Google Scholar 

  20. Peng, X. G. et al. Shape control of CdSe nanocrystals. Nature 404, 59–61 (2000).

    Article  CAS  Google Scholar 

  21. Tang, Z., Zhang, Z., Wang, Y., Glotzer, S. C. & Kotov, N. A. Self-assembly of CdTe nanocrystals into free-floating sheets. Science 314, 274–278 (2006).

    Article  CAS  Google Scholar 

  22. Robinson, R. D. et al. Spontaneous superlattice formation in nanorods through partial cation exchange. Science 317, 355–358 (2007).

    Article  CAS  Google Scholar 

  23. Norris, D. J., Yao, N., Charnock, F. T. & Kennedy, T. A. High-quality manganese-doped ZnSe nanocrystals. Nano Lett. 1, 3–7 (2001).

    Article  CAS  Google Scholar 

  24. Hanif, K. M., Meulenberg, R. W. & Strouse, G. F. Magnetic ordering in doped Cd1−xCoxSe diluted magnetic quantum dots. J. Am. Chem. Soc. 124, 11495–11502 (2002).

    Article  CAS  Google Scholar 

  25. Stowell, C. A., Wiacek, R. J., Saunders, A. E. & Korgel, B. A. Synthesis and characterization of diluted magnetic semiconductor manganese-doped indium arsenide nanocrystals. Nano Lett. 3, 1441–1447 (2003).

    Article  CAS  Google Scholar 

  26. Schwartz, D. A., Norberg, N. S., Nguyen, Q. P., Parker, J. M. & Gamelin, D. R. Magnetic quantum dots: Synthesis, spectroscopy, and magnetism of Co2+- and Ni2+-doped ZnO nanocrystals. J. Am. Chem. Soc. 125, 13205–13218 (2003).

    Article  CAS  Google Scholar 

  27. Zu, L., Norris, D. J., Kennedy, T. A., Erwin, S. C. & Efros, A. L. Impact of ripening on manganese-doped ZnSe nanocrystals. Nano Lett. 6, 334–340 (2006).

    Article  CAS  Google Scholar 

  28. Magana, D., Petera, S. C., Harter, A. G., Dalal, N. S. & Strouse, G. F. Switching-on superparamagnetism in Mn/CdSe quantum dots. J. Am. Chem. Soc. 128, 2931–2939 (2006).

    Article  CAS  Google Scholar 

  29. Yang, Y., Chen, O., Angerhofer, A. & Cao, Y. C. On doping CdS/ZnS core/shell nanocrystals with Mn. J. Am. Chem. Soc. 130, 15649–15661 (2008).

    Article  CAS  Google Scholar 

  30. Pradhan, N., Goorskey, D., Thessing, J. & Peng, X. An alternative of CdSe nanocrystal emitters: Pure and tunable impurity emissions in ZnSe nanocrystals. J. Am. Chem. Soc. 127, 17586–17587 (2005).

    Article  CAS  Google Scholar 

  31. Mikulec, F. V. et al. Organometallic synthesis and spectroscopic characterization of manganese-doped CdSe nanocrystals. J. Am. Chem. Soc. 122, 2532–2540 (2000).

    Article  CAS  Google Scholar 

  32. Erwin, S. C. et al. Doping semiconductor nanocrystals. Nature 436, 91–94 (2005).

    Article  CAS  Google Scholar 

  33. Soloviev, V. N., Eichhöfer, A., Fenske, D. & Banin, U. Size-dependent optical spectroscopy of a homologous series of CdSe cluster molecules. J. Am. Chem. Soc. 123, 2354–2364 (2001).

    Article  CAS  Google Scholar 

  34. Yuhas, B. D., Zitoun, D. O., Pauzauskie, P. J., He, R. & Yang, P. Transition-metal doped zinc oxide nanowires. Angew. Chem. Int. Ed. 45, 420–423 (2006).

    Article  CAS  Google Scholar 

  35. Chin, P. T. K., Stouwdam, J. W. & Janssen, R. A. Highly luminescent ultranarrow Mn doped ZnSe nanowires. Nano Lett. 9, 745–750 (2009).

    Article  CAS  Google Scholar 

  36. Merkulov, I. A. et al. Kinetic exchange between the conduction band electrons and magnetic ions in quantum-confined structures. Phys. Rev. Lett. 83, 1431–1434 (1999).

    Article  CAS  Google Scholar 

  37. Myers, R. C., Poggio, M., Stern, N. P., Gossard, A. C. & Awschalom, D. D. Antiferromagnetic sd exchange coupling in GaMnAs. Phys. Rev. Lett. 95, 017204 (2005).

    Article  CAS  Google Scholar 

  38. Bhattacharjee, A. K. Confinement-induced reduction of the effective exchange parameters in semimagnetic semiconductor nanostructures. Phys. Rev. B 58, 15660–15665 (1998).

    Article  CAS  Google Scholar 

  39. Joo, J., Son, J. S., Kwon, S. G., Yu, J. H. & Hyeon, T. Low-temperature solution-phase synthesis of quantum well structured CdSe nanoribbons. J. Am. Chem. Soc. 128, 5632–5633 (2006).

    Article  CAS  Google Scholar 

  40. Kasuya, A. et al. Ultra-stable nanoparticles of CdSe revealed from mass spectrometry. Nature Mater. 3, 99–102 (2004).

    Article  CAS  Google Scholar 

  41. Pradhan, N., Reifsnyder, D., Xie, R., Aldana, J. & Peng, X. Surface ligand dynamics in growth of nanocrystals. J. Am. Chem. Soc. 129, 9500–9509 (2007).

    Article  CAS  Google Scholar 

  42. Du, M.-H., Erwin, S. C. & Efros, A. L. Trapped-dopant model of doping in semiconductor nanocrystals. Nano Lett. 8, 2878–2882 (2008).

    Article  CAS  Google Scholar 

  43. Suyver, J. F., Wuister, S. F., Kelly, J. J. & Meijerink, A. Luminescence of nanocrystalline ZnSe:Mn2+. Phys. Chem. Chem. Phys. 2, 5445–5448 (2000).

    Article  CAS  Google Scholar 

  44. Kuno, M., Nirmal, M., Bawendi, M. G., Efros, A. L. & Rosen, M. Magnetic circular dichroism study of CdSe quantum dots. J. Chem. Phys. 108, 4242–4247 (1998).

    Article  CAS  Google Scholar 

  45. Beaulac, R. et al. Spin-polarizable excitonic luminescence in colloidal Mn2+-doped CdSe quantum dots. Nano Lett. 8, 1197–1201 (2008).

    Article  CAS  Google Scholar 

  46. Hundt, A., Puls, J. & Henneberger, F. Spin properties of self-organized diluted magnetic Cd1−xMnxSe quantum dots. Phys. Rev. B 69, 121309 (2004).

    Article  Google Scholar 

  47. Kossut, J. Low-dimensional structures of diluted magnetic (semimagnetic) semiconductors-a subjective review. Acta Phys. Pol. A 100, 111–138 (2001).

    Article  CAS  Google Scholar 

  48. Bussian, D. A. et al. Tunable magnetic exchange interactions in manganese-doped inverted core–shell ZnSe–CdSe nanocrystals. Nature Mater. 8, 35–40 (2009).

    Article  CAS  Google Scholar 

  49. Grieshaber, W. et al. Magneto-optic study of the interface in semimagnetic semiconductor heterostructures: Intrinsic effect and interface profile in CdTe–Cd1−xMnxTe. Phys. Rev. B 53, 4891–4904 (1996).

    Article  CAS  Google Scholar 

  50. Dalpian, G. M. & Chelikowsky, J. R. Self-purification in semiconductor nanocrystals. Phys. Rev. Lett. 96, 226802 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the National Creative Research Initiative Program (T.H. and J.P.) and the World Class University Program (T.H. and J.P.) of the Korean Ministry of Education, Science and Technology, the US National Science Foundation (J.K.F.) and the Robert A. Welch Foundation (G.S.H.) for financial support. We gratefully acknowledge the Texas Advanced Computing Center for use of their computing resources. We thank M.-S. Won in Korea Basic Science Institute for the EPR characterization. We also thank K. Ando for the preliminary study on MCD. J.H.Y. has benefited from a Seoul Science Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

J.H.Y., X.L., J.K.F. and T.H. designed and carried out experiments, analysed data and wrote the manuscript. K.E.K. and G.S.H. carried out the quantum mechanical calculations and described the results. J.H.Y., J.J., D.W.L. and J.S.S. carried out the synthesis of the materials. J.P. and Y.-W.K. carried out TEM measurements. K.-T.K. and J.-H.P. conducted XAS and EXAFS. X.L., S.S., K.T., M.D. and J.K.F. carried out magneto-optical experiments and interpreted the data. All authors have reviewed, discussed and approved the results and conclusions of this article.

Corresponding authors

Correspondence to Jacek K. Furdyna or Taeghwan Hyeon.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1048 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, J., Liu, X., Kweon, K. et al. Giant Zeeman splitting in nucleation-controlled doped CdSe:Mn2+ quantum nanoribbons. Nature Mater 9, 47–53 (2010). https://doi.org/10.1038/nmat2572

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2572

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing