Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Large modulation of carrier transport by grain-boundary molecular packing and microstructure in organic thin films

Abstract

Solution-processable organic semiconductors are central to developing viable printed electronics, and performance comparable to that of amorphous silicon has been reported for films grown from soluble semiconductors. However, the seemingly desirable formation of large crystalline domains introduces grain boundaries, resulting in substantial device-to-device performance variations. Indeed, for films where the grain-boundary structure is random, a few unfavourable grain boundaries may dominate device performance. Here we isolate the effects of molecular-level structure at grain boundaries by engineering the microstructure of the high-performance n-type perylenediimide semiconductor PDI8–CN2 and analyse their consequences for charge transport. A combination of advanced X-ray scattering, first-principles computation and transistor characterization applied to PDI8–CN2 films reveals that grain-boundary orientation modulates carrier mobility by approximately two orders of magnitude. For PDI8–CN2 we show that the molecular packing motif (that is, herringbone versus slip-stacked) plays a decisive part in grain-boundary-induced transport anisotropy. The results of this study provide important guidelines for designing device-optimized molecular semiconductors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Aligned films of the n-type small-molecule semiconductor PDI8–CN2.
Figure 2: Molecular packing in aligned PDI8–CN2 thin films.
Figure 3: Phi-scan analysis of PDI8–CN2 growth anisotropy.
Figure 4: Mobility and activation-energy anisotropy for PDI8–CN2 films.
Figure 5: In-plane grain boundaries in small-molecule films.

Similar content being viewed by others

References

  1. Klauk, H. Organic Electronics: Materials, Manufacturing and Applications (Wiley, 2006).

    Book  Google Scholar 

  2. Facchetti, A. Semiconductors for organic transistors. Mater. Today 10, 28–37 (2007).

    Article  CAS  Google Scholar 

  3. Muccini, M. A bright future for organic field-effect transistors. Nature Mater. 5, 605–613 (2006).

    Article  CAS  Google Scholar 

  4. Dodabalapur, A., Katz, H. E., Torsi, L. & Haddon, R. C. Organic heterostructure field-effect transistors. Science 269, 1560–1562 (1995).

    Article  CAS  Google Scholar 

  5. Hulea, I. N. et al. Tunable Frohlich polarons in organic single-crystal transistors. Nature Mater. 5, 982–986 (2006).

    Article  CAS  Google Scholar 

  6. Dickey, K. C., Anthony, J. E. & Loo, Y.-L. Improving organic thin-film transistor performance through solvent-vapor annealing of solution-processable triethylsilylethynyl anthradithiophene. Adv. Mater. 18, 1721–1726 (2006).

    Article  CAS  Google Scholar 

  7. Gundlach, D. J. et al. Contact-induced crystallinity for high-performance soluble acene-based transistors and circuits. Nature Mater. 7, 216–221 (2008).

    Article  CAS  Google Scholar 

  8. Sposili, R. S. & Im, J. S. Sequential lateral solidification of thin silicon films on SiO2 . Appl. Phys. Lett. 69, 2864–2866 (1996).

    Article  CAS  Google Scholar 

  9. Vlasov, Y. A. et al. Manifestation of intrinsic defects in optical properties of self-organized opal photonic crystals. Phys. Rev. E 61, 5784–5793 (2000).

    Article  CAS  Google Scholar 

  10. Ye, Y.-H., LeBlanc, F., Hache, A. & Truong, V.-V. Self-assembling three-dimensional colloidal photonic crystal structure with high crystalline quality. Appl. Phys. Lett. 78, 52–54 (2001).

    Article  CAS  Google Scholar 

  11. Street, R. A., Northrup, J. E. & Salleo, A. Transport in polycrystalline polymer thin-film transistors. Phys. Rev. B 71, 165202 (2005).

    Article  Google Scholar 

  12. Grévin, B., Rannou, P., Payerne, R., Pron, A. & Travers, J.-P. Scanning tunneling microscopy investigations of self-organized poly(3-hexylthiophene) two-dimensional polycrystals. Adv. Mater. 15, 881–884 (2003).

    Article  Google Scholar 

  13. Jimison, L. H., Toney, M. F., McCulloch, I., Heeney, M. & Salleo, A. Charge-transport anisotropy due to grain boundaries in directionally crystallized thin films of regioregular poly(3-hexylthiophene). Adv. Mater. 21, 1568–1572 (2009).

    Article  CAS  Google Scholar 

  14. Chwang, A. B. & Frisbie, C. D. Temperature and gate voltage dependent transport across a single organic semiconductor grain boundary. J. Appl. Phys. 90, 1342–1349 (2001).

    Article  CAS  Google Scholar 

  15. Kalihari, V., Tadmor, E. B., Haugstad, G. & Frisbie, C. D. Grain orientation mapping of polycrystalline organic semiconductor films by transverse shear microscopy. Adv. Mater. 20, 4033–4039 (2008).

    Article  CAS  Google Scholar 

  16. Dimitrakopoulos, C. D. & Malenfant, P. R. L. Organic thin film transistors for large area electronics. Adv. Mater. 14, 99–117 (2002).

    Article  CAS  Google Scholar 

  17. Li, D. et al. Humidity effect on electrical performance of organic thin-film transistors. Appl. Phys. Lett. 86, 042105 (2005).

    Article  Google Scholar 

  18. Sirringhaus, H. et al. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401, 685–688 (1999).

    Article  CAS  Google Scholar 

  19. Kang, S.-J. et al. Effect of rubbed polyimide layer on the field-effect mobility in pentacene thin-film transistors. Appl. Phys. Lett. 92, 052107 (2008).

    Article  Google Scholar 

  20. Becerril, H. A., Roberts, M. E., Liu, Z. H., Locklin, J. & Bao, Z. N. High-performance organic thin-film transistors through solution-sheared deposition of small-molecule organic semiconductors. Adv. Mater. 20, 2588–2594 (2008).

    Article  CAS  Google Scholar 

  21. Headrick, R. L., Wo, S., Sansoz, F. & Anthony, J. E. Anisotropic mobility in large grain size solution processed organic semiconductor thin films. Appl. Phys. Lett. 92, 063302 (2008).

    Article  Google Scholar 

  22. Lee, W. H. et al. Solution-processable pentacene microcrystal arrays for high performance organic field-effect transistors. Appl. Phys. Lett. 90, 132106 (2007).

    Article  Google Scholar 

  23. Kimura, M., Misner, M. J., Xu, T., Kim, S. H. & Russell, T. P. Long-range ordering of diblock copolymers induced by droplet pinning. Langmuir 19, 9910–9913 (2003).

    Article  CAS  Google Scholar 

  24. Merlo, J. A. et al. p-channel organic semiconductors based on hybrid acene–thiophene molecules for thin-film transistor applications. J. Am. Chem. Soc. 127, 3997–4009 (2005).

    Article  CAS  Google Scholar 

  25. Northrup, J. E., Tiago, M. L. & Louie, S. G. Surface energetics and growth of pentacene. Phys. Rev. B 66, 121404 (2002).

    Article  Google Scholar 

  26. Jones, B. A. et al. High-mobility air-stable n-type semiconductors with processing versatility: Dicyanoperylene-3,4:9,10-bis(dicarboximides). Angew. Chem. Int. Ed. 43, 6363–6366 (2004).

    Article  CAS  Google Scholar 

  27. Chen, J. et al. Thermal and mechanical cracking in bis(triisopropylsilylethnyl) pentacene thin films. J. Polym. Sci. 44, 3631–3641 (2006).

    Article  CAS  Google Scholar 

  28. Yan, H. et al. Solution processed top-gate n-channel transistors and complementary circuits on plastics operating in ambient conditions. Adv. Mater. 20, 3393–3398 (2008).

    Article  CAS  Google Scholar 

  29. Ostroverkhova, O. et al. Anisotropy of transient photoconductivity in functionalized pentacene single crystals. Appl. Phys. Lett. 89, 192113 (2006).

    Article  Google Scholar 

  30. Bredas, J. L., Calbert, J. P., da Silva Filho, D. A. & Cornil, J. Organic semiconductors: A theoretical characterization of the basic parameters governing charge transport. Proc. Natl Acad. Sci. USA 99, 5804–5809 (2002).

    Article  CAS  Google Scholar 

  31. Coropceanu, V. et al. Charge transport in organic semiconductors. Chem. Rev. 107, 926–952 (2007).

    Article  CAS  Google Scholar 

  32. Fritz, S. E., Martin, S. M., Frisbie, C. D., Ward, M. D. & Toney, M. F. Structural characterization of a pentacene monolayer on an amorphous SiO2 substrate with grazing incidence X-ray diffraction. J. Am. Chem. Soc. 126, 4084–4085 (2004).

    Article  CAS  Google Scholar 

  33. Stokes, M. A. et al. Molecular ordering in bis(phenylenyl)bithiophenes. J. Mater. Chem. 17, 3427–3432 (2007).

    Article  CAS  Google Scholar 

  34. Mannsfeld, S. C. B., Virkar, A., Reese, C., Bao, Z. & Toney, M. F. Structure of pentacene monolayers on amorphous silicon oxide and relation to charge transport. Adv. Mater. 21, 2294–2298 (2009).

    Article  CAS  Google Scholar 

  35. Smith, J. et al. High-performance organic integrated circuits based on solution processable polymer–small molecule blends. Appl. Phys. Lett. 93, 253301 (2008).

    Article  Google Scholar 

  36. Hamilton, R. et al. High-performance polymer–small molecule blend organic transistors. Adv. Mater. 21, 1166–1171 (2009).

    Article  CAS  Google Scholar 

  37. Jones, B. A., Facchetti, A., Wasielewski, M. R. & Marks, T. J. Tuning orbital energetics in arylene diimide semiconductors. Materials design for ambient stability of n-type charge transport. J. Am. Chem. Soc. 129, 15259–15278 (2007).

    Article  CAS  Google Scholar 

  38. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

    Article  Google Scholar 

  39. Bockstedte, M., Kley, A., Neugebauer, J. & Scheffler, M. Density-functional theory calculations for poly-atomic systems: Electronic structure, static and elastic properties and ab initio molecular dynamics. Comput. Phys. Commun. 107, 187–222 (1997).

    Article  CAS  Google Scholar 

  40. Troullier, N. & Martins, J. L. Efficient pseudopotentials for plane-wave calculations. II. Operators for fast iterative diagonalization. Phys. Rev. B 43, 8861–8869 (1991).

    Article  CAS  Google Scholar 

  41. Ceperley, D. M. & Alder, B. J. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566–569 (1980).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource, a national user facility operated by Stanford University on behalf of the US DOE, Office of Basic Energy Sciences. J.R. gratefully acknowledges financial support from ONR in the form of an NDSEG Fellowship, and A.S. and L.H.J. gratefully acknowledge financial support from NSF in the form of, respectively, a Career Award and a Graduate Student Fellowship. This publication was partially based on work supported by the Center for Advanced Molecular Photovoltaics (Award No KUS-C1-015-21, made by King Abdullah University of Science and Technology, KAUST). J.E.N. thanks AFOSR (FA9550-09-1-0436), and T.J.M. and A.F. thank AFOSR (FA9550-08-1-0331) for support of this research.

Author information

Authors and Affiliations

Authors

Contributions

J.R. and A.S. conceived and designed the research. J.R. fabricated films/devices, and carried out electrical testing. J.R., L.H.J., R.N. and M.F.T. carried out X-ray-scattering experiments and unit-cell determination. J.E.N. carried out first-principles calculations. T.J.M. and A.F. oversaw materials design, synthesis and processing. S.L. synthesized the material. J.R., J.E.N. and A.S. prepared the manuscript. All authors revised and approved the manuscript.

Corresponding author

Correspondence to Alberto Salleo.

Supplementary information

Supplementary Information

Supplementary Information (PDF 905 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivnay, J., Jimison, L., Northrup, J. et al. Large modulation of carrier transport by grain-boundary molecular packing and microstructure in organic thin films. Nature Mater 8, 952–958 (2009). https://doi.org/10.1038/nmat2570

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2570

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing