Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Self-assembling chimeric polypeptide–doxorubicin conjugate nanoparticles that abolish tumours after a single injection

Abstract

New strategies to self-assemble biocompatible materials into nanoscale, drug-loaded packages with improved therapeutic efficacy are needed for nanomedicine. To address this need, we developed artificial recombinant chimeric polypeptides (CPs) that spontaneously self-assemble into sub-100-nm-sized, near-monodisperse nanoparticles on conjugation of diverse hydrophobic molecules, including chemotherapeutics. These CPs consist of a biodegradable polypeptide that is attached to a short Cys-rich segment. Covalent modification of the Cys residues with a structurally diverse set of hydrophobic small molecules, including chemotherapeutics, leads to spontaneous formation of nanoparticles over a range of CP compositions and molecular weights. When used to deliver chemotherapeutics to a murine cancer model, CP nanoparticles have a fourfold higher maximum tolerated dose than free drug, and induce nearly complete tumour regression after a single dose. This simple strategy can promote co-assembly of drugs, imaging agents and targeting moieties into multifunctional nanomedicines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of CP–Dox conjugate.
Figure 2: Characterization of CP–Dox nanoparticles.
Figure 3: Internalization of CP–Dox and delivery of drug to the nucleus.
Figure 4: Plasma pharmacokinetics and tissue biodistribution.
Figure 5: Anti-tumour activity of CP–Dox nanoparticles.
Figure 6: Genomic profiles of CP–Dox- and free-Dox-treated tumour tissues.

Similar content being viewed by others

References

  1. Drummond, D. C., Meyer, O., Hong, K., Kirpotin, D. B. & Papahadjopoulos, D. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol. Rev. 51, 691–743 (1999).

    CAS  Google Scholar 

  2. Duncan, R. Polymer conjugates as anticancer nanomedicines. Nature Rev. Cancer 6, 688–701 (2006).

    CAS  Google Scholar 

  3. Lee, C. C., MacKay, J. A., Frechet, J. M. & Szoka, F. C. Designing dendrimers for biological applications. Nature Biotechnol. 23, 1517–1526 (2005).

    Article  CAS  Google Scholar 

  4. Matsumura, Y. & Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46, 6387–6392 (1986).

    CAS  Google Scholar 

  5. Brannon-Peppas, L. & Blanchette, J. O. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev. 56, 1649–1659 (2004).

    Article  CAS  Google Scholar 

  6. Urry, D. W. Physical chemistry of biological free energy transduction as demonstrated by elastic protein-based polymers. J. Phys. Chem. B 101, 11007–11028 (1997).

    Article  CAS  Google Scholar 

  7. Yamaoka, T. et al. Mechanism for the phase transition of a genetically engineered elastin model peptide (VPGIG)(40) in aqueous solution. Biomacromolecules 4, 1680–1685 (2003).

    Article  CAS  Google Scholar 

  8. Cappello, J. et al. In situ self-assembling protein polymer gel systems for administration, delivery, and release of drugs. J. Control. Release 53, 105–117 (1998).

    Article  CAS  Google Scholar 

  9. Dreher, M. R. et al. Temperature triggered self-assembly of polypeptides into multivalent spherical micelles. J. Am. Chem. Soc. 130, 687–694 (2008).

    Article  CAS  Google Scholar 

  10. Wright, E. R. & Conticello, V. P. Self-assembly of block copolymers derived from elastin-mimetic polypeptide sequences. Adv. Drug Deliv. Rev. 54, 1057–1073 (2002).

    Article  CAS  Google Scholar 

  11. Megeed, Z., Cappello, J. & Ghandehari, H. Genetically engineered silk-elastinlike protein polymers for controlled drug delivery. Adv. Drug Deliv. Rev. 54, 1075–1091 (2002).

    Article  CAS  Google Scholar 

  12. Urry, D. W., Parker, T. M., Reid, M. C. & Gowda, D. C. Biocompatibility of the bioelastic materials, poly(Gvgvp) and its gamma-irradiation cross-linked matrix—summary of generic biological test-results. J. Bioact. Compat. Polym. 6, 263–282 (1991).

    Article  CAS  Google Scholar 

  13. Liu, W. et al. Tumor accumulation, degradation and pharmacokinetics of elastin-like polypeptides in nude mice. J. Control. Release 116, 170–178 (2006).

    Article  CAS  Google Scholar 

  14. Chilkoti, A., Dreher, M. R. & Meyer, D. E. Design of thermally responsive, recombinant polypeptide carriers for targeted drug delivery. Adv. Drug Deliv. Rev. 54, 1093–1111 (2002).

    Article  CAS  Google Scholar 

  15. Meyer, D. E. & Chilkoti, A. Purification of recombinant proteins by fusion with thermally-responsive polypeptides. Nature Biotechnol. 17, 1112–1115 (1999).

    Article  CAS  Google Scholar 

  16. Furgeson, D. Y., Dreher, M. R. & Chilkoti, A. Structural optimization of a ‘smart’ doxorubicin–polypeptide conjugate for thermally targeted delivery to solid tumors. J. Control. Release 110, 362–369 (2006).

    Article  CAS  Google Scholar 

  17. Rodrigues, P. C. et al. Acid-sensitive polyethylene glycol conjugates of doxorubicin: Preparation, in vitro efficacy and intracellular distribution. Bioorg. Med. Chem. 7, 2517–2524 (1999).

    Article  CAS  Google Scholar 

  18. Bae, Y. et al. Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: Tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjug. Chem. 16, 122–130 (2005).

    Article  CAS  Google Scholar 

  19. Dreher, M. R. et al. Evaluation of an elastin-like polypeptide–doxorubicin conjugate for cancer therapy. J. Control. Release 91, 31–43 (2003).

    Article  CAS  Google Scholar 

  20. Lopes de Menezes, D. E. & Mayer, L. D. Pharmacokinetics of Bcl-2 antisense oligonucleotide (G3139) combined with doxorubicin in SCID mice bearing human breast cancer solid tumor xenografts. Cancer Chemother. Pharmacol. 49, 57–68 (2002).

    Article  CAS  Google Scholar 

  21. Singal, P. K. & Iliskovic, N. Doxorubicin-induced cardiomyopathy. N. Engl. J. Med. 339, 900–905 (1998).

    Article  CAS  Google Scholar 

  22. Tewey, K. M., Rowe, T. C., Yang, L., Halligan, B. D. & Liu, L. F. Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. Science 226, 466–468 (1984).

    Article  CAS  Google Scholar 

  23. Nitiss, J. L. Targeting DNA topoisomerase II in cancer chemotherapy. Nature Rev. Cancer 9, 338–350 (2009).

    CAS  Google Scholar 

  24. Drummond, J. T., Anthoney, A., Brown, R. & Modrich, P. Cisplatin and adriamycin resistance are associated with MutLalpha and mismatch repair deficiency in an ovarian tumor cell line. J. Biol. Chem. 271, 19645–19648 (1996).

    Article  CAS  Google Scholar 

  25. Hao, X. Y., Bergh, J., Brodin, O., Hellman, U. & Mannervik, B. Acquired resistance to cisplatin and doxorubicin in a small cell lung cancer cell line is correlated to elevated expression of glutathione-linked detoxification enzymes. Carcinogenesis 5, 1167–1173 (1994).

    Article  Google Scholar 

  26. Kabanov, A. V. et al. Polymer genomics: Shifting the gene and drug delivery paradigms. J. Control. Release 101, 259–271 (2005).

    Article  CAS  Google Scholar 

  27. Kabanov, A. V. Polymer genomics: An insight into pharmacology and toxicology of nanomedicines. Adv. Drug Deliv. Rev. 58, 1597–1621 (2006).

    Article  CAS  Google Scholar 

  28. Batrakova, E. V. et al. Alteration of genomic responses to doxorubicin and prevention of MDR in breast cancer cells by a polymer excipient: Pluronic P85. Mol. Pharmaceut. 3, 113–123 (2006).

    Article  CAS  Google Scholar 

  29. Veronese, F. M. et al. PEG-doxorubicin conjugates: Influence of polymer structure on drug release, in vitro cytotoxicity, biodistribution, and antitumor activity. Bioconjug. Chem. 16, 775–784 (2005).

    Article  CAS  Google Scholar 

  30. Kwon, G. et al. Block copolymer micelles for drug delivery: Loading and release of doxorubicin. J. Control. Release 48, 195–201 (1997).

    Article  CAS  Google Scholar 

  31. Kataoka, K., Kwon, G. S., Yokoyama, M., Okano, T. & Sakurai, Y. Block-copolymer micelles as vehicles for drug delivery. J. Control. Release 24, 119–132 (1993).

    Article  CAS  Google Scholar 

  32. Kataoka, K., Harada, A. & Nagasaki, Y. Block copolymer micelles for drug delivery: Design, characterization and biological significance. Adv. Drug Deliv. Rev. 47, 113–131 (2001).

    Article  CAS  Google Scholar 

  33. Ulbrich, K. et al. Polymeric anticancer drugs with pH-controlled activation. Int. J. Pharmaceut. 277, 63–72 (2004).

    Article  CAS  Google Scholar 

  34. Chytil, P. et al. New HPMA copolymer-based drug carriers with covalently bound hydrophobic substituents for solid tumour targeting. J. Control. Release 127, 121–130 (2008).

    Article  CAS  Google Scholar 

  35. Anton, N., Benoit, J. P. & Saulnier, P. Design and production of nanoparticles formulated from nano-emulsion templates—a review. J. Control. Release 128, 185–199 (2008).

    Article  CAS  Google Scholar 

  36. Huang, X., Jain, P. K., El-Sayed, I. H. & El-Sayed, M. A. Gold nanoparticles: Interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine 2, 681–693 (2007).

    Article  CAS  Google Scholar 

  37. Martin, C. R. & Kohli, P. The emerging field of nanotube biotechnology. Nat. Rev. Drug Discov. 2, 29–37 (2003).

    Article  CAS  Google Scholar 

  38. Nori, A. & Kopecek, J. Intracellular targeting of polymer-bound drugs for cancer chemotherapy. Adv. Drug Deliv. Rev. 57, 609–636 (2005).

    Article  CAS  Google Scholar 

  39. Kratz, F. et al. Development and in vitro efficacy of novel MMP2 and MMP9 specific doxorubicin albumin conjugates. Bioorg. Med. Chem. Lett. 11, 2001–2006 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported with NIH grant 5F32-CA-123,889 to J.A.M. and NIH grant R01-EB-00188 to A.C. We thank M. Dewhirst, M. Zalutsky and M. Dreher for advice regarding experimental design and analysis. We thank F. C. Szoka Jr, for the use of C26 cells and B. Papahadjopoulos-Sternberg for preparation of freeze-fracture electron microscopy images. We thank S. Morales, M. Schneiderman, K. Fitzgerald and K. Liang for expression and purification of CPs used in this study.

Author information

Authors and Affiliations

Authors

Contributions

J.A.M., M.C. and A.C. designed experiments, analysed data and prepared the manuscript. J.A.M., M.C., J.R.M., W.L. and A.J.S carried out experiments and analysed data.

Corresponding author

Correspondence to Ashutosh Chilkoti.

Ethics declarations

Competing interests

A. C. has a financial interest in Phase Biopharmaceuticals, which has licensed the technology for drug delivery using elastin-like biopolymers from Duke University.

Supplementary information

Supplementary Information

Supplementary Information (PDF 823 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrew MacKay, J., Chen, M., McDaniel, J. et al. Self-assembling chimeric polypeptide–doxorubicin conjugate nanoparticles that abolish tumours after a single injection. Nature Mater 8, 993–999 (2009). https://doi.org/10.1038/nmat2569

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2569

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing