Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft X-ray beams

Abstract

Fourier theory of thermal transport considers heat transport as a diffusive process where energy flow is driven by a temperature gradient. However, this is not valid at length scales smaller than the mean free path for the energy carriers in a material, which can be hundreds of nanometres in crystalline materials at room temperature. In this case, heat flow will become ‘ballistic’—driven by direct point-to-point transport of energy quanta 1. Past experiments have demonstrated size-dependent ballistic thermal transport through nanostructures such as thin films, superlattices, nanowires and carbon nanotubes1,2,3,4,5,6,7,8. The Fourier law should also break down in the case of heat dissipation from a nanoscale heat source into the bulk. However, despite considerable theoretical discussion and direct application to thermal management in nanoelectronics2, nano-enabled energy systems9,10 and nanomedicine11, this non-Fourier heat dissipation has not been experimentally observed so far. Here, we report the first observation and quantitative measurements of this transition from diffusive to ballistic thermal transport from a nanoscale hotspot, finding a significant (as much as three times) decrease in energy transport away from the nanoscale heat source compared with Fourier-law predictions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Experimental set-up for measuring thermal transport across a nanoscale interface.
Figure 2: Analytical prediction of the Fourier and ballistic components of the resistivity for thermal transport away from a half-cylinder of diameter L.
Figure 3: Normalized dynamic soft X-ray diffraction signal for Ni lines on sapphire.
Figure 4: Measured effective thermal resistivity for nickel nanostructures of width L deposited on fused-silica and sapphire substrates.

References

  1. 1

    Chen, G., Borca-Tasciuc, D. & Yang, R. G. Nanoscale heat transfer. Encyclopedia Nanosci. Nanotechnol. 7, 429–459 (2004).

    CAS  Google Scholar 

  2. 2

    Pop, E., Sinha, S. & Goodson, K. E. Heat generation and transport in nanometer-scale transistors. Proc. IEEE 94, 1587–1601 (2006).

    CAS  Article  Google Scholar 

  3. 3

    Capinski, W. S. et al. Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique. Phys. Rev. B 59, 8105–8113 (1999).

    CAS  Article  Google Scholar 

  4. 4

    Ju, Y. S. & Goodson, K. E. Phonon scattering in silicon films with thickness of order 100 nm. Appl. Phys. Lett. 74, 3005–3007 (1999).

    CAS  Article  Google Scholar 

  5. 5

    Chen, R. et al. Thermal conductance of thin silicon nanowires. Phys. Rev. Lett. 101, 105501 (2008).

    Article  Google Scholar 

  6. 6

    Chiritescu, C. et al. Ultralow thermal conductivity in disordered, layered WSe2 crystals. Science 315, 351–353 (2007).

    CAS  Article  Google Scholar 

  7. 7

    Hochbaum, A. I. et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163–167 (2008).

    CAS  Article  Google Scholar 

  8. 8

    Chang, C. W., Okawa, D., Garcia, H., Majumdar, A. & Zettl, A. Breakdown of Fourier’s law in nanotube thermal conductors. Phys. Rev. Lett. 101, 075903 (2008).

    CAS  Article  Google Scholar 

  9. 9

    Poudel, B. et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008).

    CAS  Article  Google Scholar 

  10. 10

    Lee, J. et al. Electrical, thermal, and mechanical characterization of silicon microcantilever heaters. J. Microelectromech. Syst. 15, 1644–1655 (2006).

    CAS  Article  Google Scholar 

  11. 11

    Hamad-Schifferli, K., Schwarts, J. J., Santos, A. T., Zhang, S. G. & Jacobson, J. M. Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna. Nature 415, 152–155 (2002).

    Article  Google Scholar 

  12. 12

    Mahan, G. D. & Claro, F. Nonlocal theory of thermal conductivity. Phys. Rev. B 38, 1963–1969 (1988).

    CAS  Article  Google Scholar 

  13. 13

    Chen, G. Nonlocal and nonequilibrium heat conduction in the vicinity of nanoparticles. J. Heat Transfer 118, 539–545 (1996).

    CAS  Article  Google Scholar 

  14. 14

    Yang, R. G., Chen, G., Laroche, M. & Taur, Y. Simulation of nanoscale multidimensional transient heat conduction problems using ballistic-diffusive equations and phonon Boltzmann equation. J. Heat Transfer 127, 298–306 (2005).

    Article  Google Scholar 

  15. 15

    Saha, S. K. & Shi, L. Molecular dynamics simulation of thermal transport at a nanometer scale constriction in silicon. J. Appl. Phys. 101, 074304 (2007).

    Article  Google Scholar 

  16. 16

    Panzer, M. A. & Goodson, K. E. Thermal resistance between low-dimensional nanostructures and semi-infinite media. J. Appl. Phys. 103, 094301 (2008).

    Article  Google Scholar 

  17. 17

    Chen, G. Ballistic-diffusive heat-conduction equations. Phys. Rev. Lett. 86, 2297–2300 (2001).

    CAS  Article  Google Scholar 

  18. 18

    Volz, S. & Chapuis, P. O. Increase of thermal resistance between a nanostructure and a surface due to phonon multireflections. J. Appl. Phys. 103, 034306 (2008).

    Article  Google Scholar 

  19. 19

    Prasher, R. Predicting the thermal resistance of nanosized constrictions. Nano Lett. 5, 2155–2159 (2005).

    CAS  Article  Google Scholar 

  20. 20

    Hasegawa, M. & Sone, Y. Rarefied gas flow through a slit. Phys. Fluids A 3, 466–477 (1991).

    CAS  Article  Google Scholar 

  21. 21

    Wexler, G. Size effect and non-local Boltzmann transport equation in orifice and disk geometry. Proc. Phys. Soc. Lond. 89, 927–941 (1966).

    CAS  Article  Google Scholar 

  22. 22

    Sverdrup, P. G., Sinha, S., Asheghi, M., Uma, S. & Goodson, K. E. Measurement of ballistic phonon conduction near hotspots in silicon. Appl. Phys. Lett. 78, 3331–3333 (2001).

    CAS  Article  Google Scholar 

  23. 23

    Cahill, D. G. Analysis of heat flow in layered structures for time-domain thermoreflectance. Rev. Sci. Instrum. 75, 5119–5122 (2004).

    CAS  Article  Google Scholar 

  24. 24

    Etessam-Yazdani, K., Asheghi, M. & Hamann, H. Proc. HT2007-32868, ASME-JSME (Thermal Engineering Summer Heat Transfer Conference) 349–356 (2007).

    Book  Google Scholar 

  25. 25

    Rundquist, A. et al. Phase-matched generation of coherent soft X-rays. Science 280, 1412–1415 (1998).

    CAS  Article  Google Scholar 

  26. 26

    Tobey, R. et al. Ultrafast extreme ultraviolet holography: Dynamic monitoring of surface deformation. Opt. Lett. 32, 286–288 (2007).

    Article  Google Scholar 

  27. 27

    Miaja-Avila, L. et al. Laser-assisted photoelectric effect from surfaces. Phys. Rev. Lett. 101, 113604 (2008).

    Article  Google Scholar 

  28. 28

    Siemens, M. et al. High-frequency surface acoustic wave propagation in nanostructures characterized by coherent extreme ultraviolet beams. Appl. Phys. Lett. 94, 093103 (2009).

    Article  Google Scholar 

  29. 29

    Vicanek, M., Rosch, A., Piron, F. & Simon, G. Thermal deformation of a solid-surface under laser irradiation. Appl. Phys. A 59, 407–412 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the DOE Division of Chemical Sciences, Geosciences, and Biosciences and the National Science Foundation Engineering Research Center for Extreme Ultraviolet Science and Technology. R.Y. acknowledges support from NSF/CAREER (#0846561) and AFOSR/DCT (#FA9550-08-1-0078) programmes.

Author information

Affiliations

Authors

Contributions

M.E.S., R.Y., Q.L., M.M.M. and H.C.K., planned the experiment. The samples were designed and fabricated by E.H.A. Experiments were carried out by M.E.S. and Q.L. All authors discussed the results, analysed the data and contributed to manuscript preparation.

Corresponding author

Correspondence to Mark E. Siemens.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1142 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Siemens, M., Li, Q., Yang, R. et al. Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft X-ray beams. Nature Mater 9, 26–30 (2010). https://doi.org/10.1038/nmat2568

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing