Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Small-molecule-directed nanoparticle assembly towards stimuli-responsive nanocomposites

Abstract

Precise control of the spatial organization of nanoscopic building blocks, such as nanoparticles, over multiple length scales is a bottleneck in the ‘bottom-up’ generation of technologically important materials. Only a few approaches have been shown to achieve nanoparticle assemblies without surface modification. We demonstrate a simple yet versatile approach to produce stimuli-responsive hierarchical assemblies of readily available nanoparticles by combining small molecules and block copolymers. Organization of nanoparticles into one-, two- and three-dimensional arrays with controlled inter-particle separation and ordering is achieved without chemical modification of either the nanoparticles or block copolymers. Nanocomposites responsive to heat and light are demonstrated, where the spatial distribution of the nanoparticles can be varied by exposure to heat or light or changing the local environment. The approach described is applicable to a wide range of nanoparticles and compatible with existing fabrication processes, thereby enabling a non-disruptive approach for the generation of functional devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TEM images of blends of PS(40)-b-P4VP(5.6)(PDP)r and various nanoparticles.
Figure 2: A blend of PS(40)-b-P4VP(5.6)(PDP)3 and 5.4 nm PbS (7 vol%) nanoparticles, showing the PbS nanoparticles arranged in a hexagonal grid.
Figure 3: In situ SAXS profiles of the blend of PS(40)-b-P4VP(5.6)(PDP)2 and 4 nm CdSe (2 vol%) nanoparticles during the heating and cooling cycles and corresponding TEM images and schematic drawings.
Figure 4: Directed nanoparticle assemblies using light-responsive small molecules and BCP.

Similar content being viewed by others

References

  1. Aldaye, F. A., Palmer, A. L. & Sleiman, H. F. Assembling materials with DNA as the guide. Science 321, 1795–1799 (2008).

    Article  CAS  Google Scholar 

  2. Balazs, A. C., Emrick, T. & Russell, T. P. Nanoparticle polymer composites: Where two small worlds meet. Science 314, 1107–1110 (2006).

    Article  CAS  Google Scholar 

  3. Boal, A. K. et al. Self-assembly of nanoparticles into structured spherical and network aggregates. Nature 404, 746–748 (2000).

    Article  CAS  Google Scholar 

  4. Glotzer, S. & Solomon, M. Anisotropy of building blocks and their assembly into complex structures. Nature Mater. 6, 557–562 (2007).

    Article  Google Scholar 

  5. Huynh, W. U., Dittmer, J. J. & Alivisatos, A. P. Hybrid nanorod-polymer solar cells. Science 295, 2425–2427 (2002).

    Article  CAS  Google Scholar 

  6. Li, Q. F. et al. Responsive assemblies: Gold nanoparticles with mixed ligands in microphase separated block copolymers. Adv. Mater. 20, 1462–1466 (2008).

    Article  CAS  Google Scholar 

  7. Costanzo, P. J. & Beyer, F. L. Thermally driven assembly of nanoparticles in polymer matrices. Macromolecules 40, 3996–4001 (2007).

    Article  CAS  Google Scholar 

  8. Alivisatos, A. P. et al. Organization of ‘nanocrystal molecules’ using DNA. Nature 382, 609–611 (1996).

    Article  CAS  Google Scholar 

  9. Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    Article  CAS  Google Scholar 

  10. Bockstaller, M. R., Mickiewicz, R. A. & Thomas, E. L. Block copolymer nanocomposites: Perspectives for tailored functional materials. Adv. Mater. 17, 1331–1349 (2005).

    Article  CAS  Google Scholar 

  11. Chiu, J. J., Kim, B. J., Kramer, E. J. & Pine, D. J. Control of nanoparticle location in block copolymers. J. Am. Chem. Soc. 127, 5036–5037 (2005).

    Article  CAS  Google Scholar 

  12. Lin, Y. et al. Self-directed self-assembly of nanoparticle/copolymer mixtures. Nature 434, 55–59 (2005).

    Article  CAS  Google Scholar 

  13. Mackay, M. E. et al. General strategies for nanoparticle dispersion. Science 311, 1740–1743 (2006).

    Article  CAS  Google Scholar 

  14. Shenhar, R., Norsten, T. B. & Rotello, V. M. Polymer-mediated nanoparticle assembly: Structural control and applications. Adv. Mater. 17, 657–669 (2005).

    Article  CAS  Google Scholar 

  15. Lopes, W. A. & Jaeger, H. M. Hierarchical self-assembly of metal nanostructures on diblock copolymer scaffolds. Nature 414, 735–738 (2001).

    Article  CAS  Google Scholar 

  16. Thompson, R. B., Ginzburg, V. V., Matsen, M. W. & Balazs, A. C. Predicting the mesophases of copolymer-nanoparticle composites. Science 292, 2469–2472 (2001).

    Article  CAS  Google Scholar 

  17. Bockstaller, M. R., Lapetnikov, Y., Margel, S. & Thomas, E. L. Size-selective organization of enthalpic compatibilized nanocrystals in ternary block copolymer/particle mixtures. J. Am. Chem. Soc. 125, 5276–5277 (2003).

    Article  CAS  Google Scholar 

  18. Lauter-Pasyuk, V. et al. Effect of nanoparticle size on the internal structure of copolymer-nanoparticles composite thin films studied by neutron reflection. Physica B 241, 1092–1094 (1997).

    Article  Google Scholar 

  19. Lee, J. Y., Thompson, R. B., Jasnow, D. & Balazs, A. C. Entropically driven formation of hierarchically ordered nanocomposites. Phys. Rev. Lett. 89, 155503 (2002).

    Article  Google Scholar 

  20. Spontak, R. et al. Selectivity- and size-induced segregation of molecular and nanoscale species in microphase-ordered triblock copolymers. Nano Lett. 6, 2115–2120 (2006).

    Article  CAS  Google Scholar 

  21. Matsen, M. W. & Thompson, R. B. Particle distributions in a block copolymer nanocomposite. Macromolecules 41, 1853–1860 (2008).

    Article  CAS  Google Scholar 

  22. Glogowski, E., Tangirala, R., Russell, T. P. & Emrick, T. Functionalization of nanoparticles for dispersion in polymers and assembly in fluids. J. Polym. Sci. Polym. Chem. 44, 5076–5086 (2006).

    Article  CAS  Google Scholar 

  23. Kim, B. J., Fredrickson, G. H. & Kramer, E. J. Effect of polymer ligand molecular weight on polymer-coated nanoparticle location in block copolymers. Macromolecules 41, 436–447 (2008).

    Article  CAS  Google Scholar 

  24. Chiu, J. J. et al. Distribution of nanoparticles in lamellar domains of block copolymers. Macromolecules 40, 3361–3365 (2007).

    Article  CAS  Google Scholar 

  25. Tsutsumi, K., Funaki, Y., Hirokawa, Y. & Hashimoto, T. Selective incorporation of palladium nanoparticles into microphase-separated domains of poly(2-vinylpyridine)-block-polyisoprene. Langmuir 15, 5200–5203 (1999).

    Article  CAS  Google Scholar 

  26. Huh, J., Ginzburg, V. V. & Balazs, A. C. Thermodynamic behavior of particle/diblock copolymer mixtures: Simulation and theory. Macromolecules 33, 8085–8096 (2000).

    Article  CAS  Google Scholar 

  27. Templeton, A. C., Wuelfing, M. P. & Murray, R. W. Monolayer protected cluster molecules. Acc. Chem. Res. 33, 27–36 (2000).

    Article  CAS  Google Scholar 

  28. Hong, R., Fischer, N. O., Emrick, T. & Rotello, V. M. Surface pegylation and ligand exchange chemistry of FePt nanoparticles for biological applications. Chem. Mater. 17, 4617–4621 (2005).

    Article  CAS  Google Scholar 

  29. Owen, J. S., Park, J., Trudeau, P. & Alivisatos, A. P. Reaction chemistry and ligand exchange at cadmium-selenide nanocrystal surfaces. J. Am. Chem. Soc. 130, 12279–12281 (2008).

    Article  CAS  Google Scholar 

  30. Beard, M. C. et al. Variations in the quantum efficiency of multiple exciton generation for a series of chemically treated PbSe nanocrystal films. Nano Lett. 9, 836–845 (2009).

    Article  CAS  Google Scholar 

  31. Kato, T. & Fréchet, J. M. J. Stabilization of a liquid-crystalline phase through noncovalent interaction with a polymer side-chain. Macromolecules 22, 3818–3819 (1989).

    Article  CAS  Google Scholar 

  32. Antonietti, M., Conrad, J. & Thunemann, A. Polyelectrolyte-surfactant complexes—a new-type of solid, mesomorphous material. Macromolecules 27, 6007–6011 (1994).

    Article  CAS  Google Scholar 

  33. Ruokolainen, J. et al. Poly(4-vinyl pyridine)/zinc dodecyl benzene sulfonate mesomorphic state due to coordination complexation. Macromolecules 28, 7779–7784 (1995).

    Article  CAS  Google Scholar 

  34. Ober, C. K. & Wegner, G. Polyelectrolyte-surfactant complexes in the solid state: Facile building blocks for self-organizing materials. Adv. Mater. 9, 17–31 (1997).

    Article  CAS  Google Scholar 

  35. Stewart, D. & Imrie, C. T. Toward supramolecular side-chain liquid crystal polymers. 5. The template receptor approach. Macromolecules 30, 877–884 (1997).

    Article  CAS  Google Scholar 

  36. Ikkala, O. & ten Brinke, G. Hierarchical self-assembly in polymeric complexes: Towards functional materials. Chem. Commun. 2131–2137 (2004).

  37. Ruokolainen, J. et al. Switching supramolecular polymeric materials with multiple length scales. Science 280, 557–560 (1998).

    Article  CAS  Google Scholar 

  38. Valkama, S. et al. Self-assembled structures in diblock copolymers with hydrogen-bonded amphiphilic plasticizing compounds. Macromolecules 39, 9327–9336 (2006).

    Article  CAS  Google Scholar 

  39. White, T. J., Serak, S. V., Tabiryan, N. V., Vaia, R. A. & Bunning, T. J. Polarization-controlled, photodriven bending in monodomain liquid crystal elastomer cantilevers. J. Mater. Chem. 19, 1080–1085 (2009).

    Article  CAS  Google Scholar 

  40. Saariaho, M., Subbotin, A., Szleifer, I., Ikkala, O. & ten Brinke, G. Effect of side chain rigidity on the elasticity of comb copolymer cylindrical brushes: A monte carlo simulation study. Macromolecules 32, 4439–4443 (1999).

    Article  CAS  Google Scholar 

  41. Ruokolainen, J. et al. Supramolecular routes to hierarchical structures: Comb–coil diblock copolymers organized with two length scales. Macromolecules 32, 1152–1158 (1999).

    Article  CAS  Google Scholar 

  42. Lin, Y., Skaff, H., Emrick, T., Dinsmore, A. D. & Russell, T. P. Nanoparticle assembly and transport at liquid–liquid interfaces. Science 299, 226–229 (2003).

    Article  CAS  Google Scholar 

  43. Kim, B. J. et al. Creating surfactant nanoparticles for block copolymer composites through surface chemistry. Langmuir 23, 12693–12703 (2007).

    Article  CAS  Google Scholar 

  44. Kim, B. J., Fredrickson, G. H., Hawker, C. J. & Kramer, E. J. Nanoparticle surfactants as a route to bicontinuous block copolymer morphologies. Langmuir 23, 7804–7809 (2007).

    Article  CAS  Google Scholar 

  45. Brode, W. R., Gould, J. H. & Wyman, G. M. Phototropism and cis–trans isomerism in aromatic azo compounds. J. Am. Chem. Soc. 74, 4641–4646 (1952).

    Article  CAS  Google Scholar 

  46. Eisenbach, C. D. Effect of polymer matrix on cis–trans isomerization of azobenzene residues in bulk polymers. Makromol. Chem. 179, 2489–2506 (1978).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. P. Russell for the valuable discussions. SAXS experiments were carried out at beamline 7.3.3 at the Advanced Light Source. CoFe2O4 nanoparticle was provided by the Molecular Foundry at Lawrence Berkeley National Laboratory. This was supported by the Army Research Office STIR program under award No. W911NF-07-1-0653; NSF DMR-0805301; by the DuPont Young Professor Grant and by the 3 M Nontenured Faculty Grant. This work was also supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231 through the ‘Organic-inorganic Nanocomposites’ programme at LBNL. H.J. acknowledges support from the Ministry of Education, Science, Sports and Culture through Grants-in-Aid No. 19031016, 21015017, 21106512 and 21241030.

Author information

Authors and Affiliations

Authors

Contributions

T.X. conceived and guided the project. Y.Z., K.T. and A.J.M. carried out sample preparation, measurements and data analyses detailed in the article. T.S. carried out the initial exploration and B.J.R. carried out the experiments using light responsive molecules. K.M. and H.J. carried out TEM tomography on select samples. J.M.L., Y.W. and A.P.A. provided the nanoparticles used. D.P. and J.M.J.F. synthesized the OPAP.

Corresponding author

Correspondence to Ting Xu.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4494 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Thorkelsson, K., Mastroianni, A. et al. Small-molecule-directed nanoparticle assembly towards stimuli-responsive nanocomposites. Nature Mater 8, 979–985 (2009). https://doi.org/10.1038/nmat2565

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2565

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing