Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Solution-deposited sodium beta-alumina gate dielectrics for low-voltage and transparent field-effect transistors

A Corrigendum to this article was published on 03 February 2010

This article has been updated

Abstract

Sodium beta-alumina (SBA) has high two-dimensional conductivity, owing to mobile sodium ions in lattice planes, between which are insulating AlOx layers. SBA can provide high capacitance perpendicular to the planes, while causing negligible leakage current owing to the lack of electron carriers and limited mobility of sodium ions through the aluminium oxide layers. Here, we describe sol–gel-beta-alumina films as transistor gate dielectrics with solution-deposited zinc-oxide-based semiconductors and indium tin oxide (ITO) gate electrodes. The transistors operate in air with a few volts input. The highest electron mobility, 28.0 cm2 V−1 s−1, was from zinc tin oxide (ZTO), with an on/off ratio of 2×104. ZTO over a lower-temperature, amorphous dielectric, had a mobility of 10 cm2 V−1 s−1. We also used silicon wafer and flexible polyimide–aluminium foil substrates for solution-processed n-type oxide and organic transistors. Using poly(3,4-ethylenedioxythiophene) poly(styrenesulphonate) conducting polymer electrodes, we prepared an all-solution-processed, low-voltage transparent oxide transistor on an ITO glass substrate.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Crystal data for SBA.
Figure 2: Capacitance data for SBA films.
Figure 3: ZTO transistor data.
Figure 4: Transfer characteristics (ID versus VG) and output characteristics (ID versus VD) for organic and hybrid transistors.

Change history

  • 03 February 2010

    In Fig. 2b of this Article originally published, the vertical axis labelling was incorrect. Also, in the Methods section, “0.041 mg” should have been “0.041 g”. These errors have been corrected in the HTML and PDF versions.

References

  1. Sirringhaus, H. Device physics of solution-processed organic field-effect transistors. Adv. Mater. 17, 2411–2425 (2005).

    CAS  Article  Google Scholar 

  2. Katz, H. E. et al. A soluble and air-stable organic semiconductor with high electron mobility. Nature 404, 478–481 (2000).

    CAS  Article  Google Scholar 

  3. Dimitrakopoulos, C. D. & Malenfant, P. R. L. Organic thin film transistors for large area electronics. Adv. Mater. 14, 99–117 (2002).

    CAS  Article  Google Scholar 

  4. Katz, H. E. Recent advances in semiconductor performance and printing processes for organic transistor-based electronics. Chem. Mater. 16, 4748–4756 (2004).

    CAS  Article  Google Scholar 

  5. Huitema, H. E. A. et al. Active-matrix displays driven by solution processed polymeric transistors. Adv. Mater. 14, 1201 (2002).

    CAS  Article  Google Scholar 

  6. Mushrush, M., Facchetti, A., Lefenfeld, M., Katz, H. E. & Marks, T. J. Easily processable phenylene–thiophene-based organic field-effect transistors and solution-fabricated nonvolatile transistor memory elements. J. Am. Chem. Soc. 125, 9414 (2003).

    CAS  Article  Google Scholar 

  7. Afzali, A., Dimitrakopoulos, C. D. & Breen, T. L. High-performance, solution-processed organic thin film transistors from a novel pentacene precursor. J. Am. Chem. Soc. 124, 8812 (2002).

    CAS  Article  Google Scholar 

  8. Sirringhaus, H. et al. High-resolution inkjet printing of all-polymer transistor circuits. Science 290, 2123–2126 (2000).

    CAS  Article  Google Scholar 

  9. Kagan, C. R., Mitzi, D. B. & Dimitrakopoulos, C. D. Organic–inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286, 945–947 (1999).

    CAS  Article  Google Scholar 

  10. Sun, Y. & Rogers, J. A. Inorganic semiconductors for flexible electronics. Adv. Mater. 19, 1897–1916 (2007).

    CAS  Article  Google Scholar 

  11. Ju, S. et al. Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. Nature Nanotech. 2, 378–384 (2007).

    CAS  Article  Google Scholar 

  12. Zaumseil, J. & Sirringhaus, H. Electron and ambipolar transport in organic field-effect transistors. Chem. Rev. 107, 1296–1223 (2007).

    CAS  Article  Google Scholar 

  13. Veres, J., Ogier, S., Lloyd, G. & de Leeuw, D. Gate insulators in organic field-effect transistors. Chem Mater. 16, 4543–4555 (2004).

    CAS  Article  Google Scholar 

  14. Facchetti, A., Yoon, M. H. & Marks, T. J. Gate dielectric for organic field effect transistors: New opportunities for organic electronics. Adv. Mater. 17, 1705–1725 (2005).

    CAS  Article  Google Scholar 

  15. Wong, H. & Iwai, H. On the scaling issues and high-k replacement of ultrathin gate dielectrics for nanoscale MOS transistors. Microelectr. Eng. 83, 1867–1904 (2006).

    CAS  Article  Google Scholar 

  16. Robertson, J. High dielectric constant oxides. Eur. Phys. J. Appl. Phys. 28, 265–291 (2004).

    CAS  Article  Google Scholar 

  17. Aoki, Y. & Kunitake, T. Solution based fabrication of high-k gate dielectric for next generation metal oxide semiconductor transistors. Adv. Mater. 16, 118–123 (2004).

    CAS  Article  Google Scholar 

  18. Klauk, H., Zschieschang, U., Pflaum, J. & Halik, M. Ultralow-power organic complementary circuits. Nature 445, 745–748 (2007).

    CAS  Article  Google Scholar 

  19. Halik, M. et al. Low-voltage organic transistors with an amorphous molecular gate dielectric. Nature 431, 963–966 (2004).

    CAS  Article  Google Scholar 

  20. Weitz, R. T. et al. High-performance carbon nanotube field effect transistors with a thin gate dielectric based on a self-assembled monolayer. Nano Lett. 7, 22–27 (2007).

    CAS  Article  Google Scholar 

  21. Cho, J. H. et al. High-capacitance ion gel gate dielectrics with faster polarization response times for organic thin film transistors. Adv. Mater. 20, 686–690 (2008).

    CAS  Article  Google Scholar 

  22. Panzer, M. J. & Frisbie, C. D. Exploiting ionic coupling in electronic devices: Electrolyte-gated organic field-effect transistors. Adv. Mater. 20, 3177–3180 (2008).

    CAS  Article  Google Scholar 

  23. Panzer, M. J. & Frisbie, C. D. Polymer electrolyte gate dielectric reveals finite windows of high conductivity in organic thin film transistors at high charge carrier densities. J. Am. Chem. Soc. 127, 6960–6961 (2005).

    CAS  Article  Google Scholar 

  24. Cho, J. H. et al. Printable ion gel gate dielectrics for low voltage polymer thin-film transistors on plastic. Nature Mater. 7, 900–906 (2008).

    CAS  Article  Google Scholar 

  25. Dhoot, A. S. et al. Beyond the metal–insulator transition in polymer electrolyte gated polymer field-effect transistors. Proc. Natl Acad. Sci. USA 103, 11834–11837 (2006).

    CAS  Article  Google Scholar 

  26. Yoon, M. H., Facchetti, A. & Marks, T. J. πσ molecular dielectric multilayers for low-voltage organic thin-film transistors. Proc. Natl Acad. Sci. USA 102, 4678–4682 (2005).

    CAS  Article  Google Scholar 

  27. Wang, L. et al. High-performance transparent inorganic–organic hybrid thin-film n-type transistors. Nature Mater. 5, 893–900 (2006).

    CAS  Article  Google Scholar 

  28. DiBenedetto, S. A., Frattarelli, D., Ratner, M. A., Facchetti, A. & Marks, T. J. Vapor phase self-assembly of molecular gate dielectrics for thin film transistors. J. Am. Chem. Soc. 130, 7528–7529 (2008).

    CAS  Article  Google Scholar 

  29. Whittingham, M. S. & Huggins, R. A. Measurement of sodium ion transport in beta alumina using reversible solid electrodes. J. Chem. Phys. 54, 45–51 (1971).

    Article  Google Scholar 

  30. Whittingham, M. S. & Huggins, R. A. Transport properties of silver beta alumina. J. Electrochem. Soc. 118, 1–6 (1971).

    CAS  Article  Google Scholar 

  31. Armstrong, R. D., Dickinson, T. & Turner, J. The breakdown of β-alumina ceramic electrolyte. Electrochem. Acta. 19, 187–192 (1974).

    CAS  Article  Google Scholar 

  32. Ngai, K. L. & Strom, U. Dielectric response of Na-β alumina: Evidence for a glass transition. Phys. Rev. B 27, 6031–6036 (1983).

    CAS  Article  Google Scholar 

  33. Strom, U. & Taylor, P. C. Contact free conductivity of layered materials: Na-β alumina. J. Appl. Phys. 50, 5761–5763 (1979).

    CAS  Article  Google Scholar 

  34. Roth, W. L., Reidinger, F. & Placa, S. L. in Superionic Conductors (eds Mahan, G. D. & Roth., W. L.) 223 (Plenum, 1976).

    Book  Google Scholar 

  35. Yoldas, B. E. Transparent porous alumina. Am. Ceram. Soc. Bull. 54, 286–288 (1975).

    CAS  Google Scholar 

  36. Yoldas, B. E. Alumina sol preparation from alkoxide. Am. Ceram. Soc. Bull. 54, 289–290 (1975).

    CAS  Google Scholar 

  37. Yoldas, B. E. Alumina gels that form porous transparent Al2O3 . J. Mater. Sci. 10, 1856–1860 (1975).

    CAS  Article  Google Scholar 

  38. Jayaraman, V., Periaswami, G. & Kutty, T. R. N. Influence of the preparative conditions on the precursor phases formed during the synthesis of beta-alumina by the wet chemical gel to crystallite conversions. Mater. Chem. Phys. 52, 46–53 (1998).

    CAS  Article  Google Scholar 

  39. Jayaraman, V., Periaswami, G. & Kutty, T. R. N. Preparation of potassium beta aluminas by gel-to-crystallite conversion and their characterization. J. Mater. Chem. 8, 1087–1094 (1998).

    CAS  Article  Google Scholar 

  40. Pan, H. C., Chou, C. C. & Tsai, H. L. Low-temperature processing of sol–gel derived La0.5Sr0.5MnO3 buffer electrode and PbZr0.52Ti0.48O3 films using CO2 laser annealing. Appl. Phys. Lett. 83, 3156–3158 (2003).

    CAS  Article  Google Scholar 

  41. Chou, C. C., Tsai, T. D. & Tu, W. H. Low-temperature processing of sol–gel derived Pb(Zr,Ti)O3 thick films using CO2 laser annealing. J. Sol–Gel Sci. Technol. 42, 315–322 (2007).

    CAS  Article  Google Scholar 

  42. Subasri, R., Mathews, T., Sreedharan, O. M. & Raghunathan, V. S. Microwave processing of sodium beta alumina. Solid State Ion. 158, 199–204 (2003).

    CAS  Article  Google Scholar 

  43. Chang, Y. J., Lee, D. H., Herman, G. S. & Chang, C. H. High-performance, spin-coated zinc tin oxide thin-film transistors. Electrochem. Solid State Lett. 10, H135–H138 (2007).

    CAS  Article  Google Scholar 

  44. Lee, D. H., Chang, Y. J., Herman, G. S. & Chang, C. H. A general route to printable high-mobility transparent amorphous oxide semiconductors. Adv. Mater. 19, 843–847 (2007).

    CAS  Article  Google Scholar 

  45. Seon, J. B., Lee, S., Kim, J. M. & Jeong, H. D. Spin-coated CdS thin films for n-channel thin film transistor. Chem. Mater. 21, 604–611 (2009).

    CAS  Article  Google Scholar 

  46. Klauk, H., Zschieschang, U. & Halik, M. Low-voltage organic thin-film transistors with large transconductance. J. Appl. Phys. 102, 074514 (2007).

    Article  Google Scholar 

  47. Lin, Y. S. et al. Interfacial properties of ZrO2 on silicon. J. Appl. Phys. 93, 5945 (2003).

    CAS  Article  Google Scholar 

  48. Pal, B. N. et al. Pentacene-zinc oxide vertical diode with compatible grains and 15-MHz rectification. Adv. Mater. 20, 1023–1028 (2008).

    CAS  Article  Google Scholar 

  49. Pal, B. N., Trottman, P., Sun, J. & Katz, H. E. Solution-deposited zinc oxide and zinc oxide/pentacene bilayer transistors: High mobility n-channel, ambipolar, and nonvolatile devices. Adv. Funct. Mater. 18, 1832–1839 (2008).

    CAS  Article  Google Scholar 

  50. See, K., Sarjeant, A., Landis, C. L. & Katz, H. E. Easily synthesized naphthalene tetracarboxylic diimide semiconductors with high electron mobility in air. Chem. Mater 20, 3609–3616 (2008).

    CAS  Article  Google Scholar 

  51. Edvardsson, S., Ojamae, L. & Thomas, J. O. J. Phys. Condens. Matter 6, 1319–1332 (1994).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge valuable discussions with D. Chakravorty (Calcutta). We thank J. Sun for an AFM characterization of the glassy oxide overlayer and P. Trottman of Howard University for testing of control devices on SiO2. We thank AFOSR (contract number FA9550-06-1-0076), DOE (contract number DE-FG01-07ER-46465 and subcontract with Los Alamos National Laboratory), the Johns Hopkins University Applied Physics Laboratory fellowship programme and the NSF PREM programme with Howard University for support.

Author information

Authors and Affiliations

Authors

Contributions

B.N.P.: inorganic device fabrication and testing, SBA processing and structures, dielectric characterization. B.M.D.: inorganic and pentacene device studies, SBA dielectric studies. K.C.S.: synthesis of NTCDI semiconductor and device demonstration on SBA. H.E.K.: project direction including device design, application of n-channel semiconductors and dielectric mechanistic analysis.

Corresponding author

Correspondence to Howard E. Katz.

Supplementary information

Supplementary Information

Supplementary Information (PDF 593 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pal, B., Dhar, B., See, K. et al. Solution-deposited sodium beta-alumina gate dielectrics for low-voltage and transparent field-effect transistors. Nature Mater 8, 898–903 (2009). https://doi.org/10.1038/nmat2560

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2560

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing