Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Enhanced ordering temperatures in antiferromagnetic manganite superlattices

Abstract

The disorder inherent to doping by cation substitution in the complex oxides can have profound effects on collective-ordered states. Here, we demonstrate that cation-site ordering achieved through digital-synthesis techniques can dramatically enhance the antiferromagnetic ordering temperatures of manganite films. Cation-ordered (LaMnO3)m/(SrMnO3)2m superlattices show Néel temperatures (TN) that are the highest of any La1−xSrxMnO3 compound, 70 K greater than compositionally equivalent randomly doped La1/3Sr2/3MnO3. The antiferromagnetic order is A-type, consisting of in-plane double-exchange-mediated ferromagnetic sheets coupled antiferromagnetically along the out-of-plane direction. Through synchrotron X-ray scattering, we have discovered an in-plane structural modulation that reduces the charge itinerancy and hence the ordering temperature within the ferromagnetic sheets, thereby limiting TN. This modulation is mitigated and driven to long wavelengths by cation ordering, enabling the higher TN values of the superlattices. These results provide insight into how cation-site ordering can enhance cooperative behaviour in oxides through subtle structural phenomena.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Chemical and magnetic structure of a (SrMnO3)2–(LaMnO3)1 superlattice.
Figure 2: Temperature dependence of the antiferromagnetic order as measured by neutron diffraction.
Figure 3: Temperature dependence of the c-axis parameter.
Figure 4: In-plane structural properties obtained from synchrotron X-ray scattering.

References

  1. Ohtomo, A. & Hwang, H. Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423–426 (2004).

    Article  CAS  Google Scholar 

  2. Bousquet, E. et al. Improper ferroelectricity in perovskite oxide artificial superlattices. Nature 452, 732–736 (2008).

    Article  CAS  Google Scholar 

  3. Chakhalian, J. et al. Orbital reconstruction and covalent bonding at an oxide interface. Science 318, 1115–1117 (2007).

    Article  Google Scholar 

  4. Smadici, S. et al. Electronic reconstruction at SrMnO3–LaMnO3 superlattice interfaces. Phys. Rev. Lett. 99, 196404 (2007).

    Article  Google Scholar 

  5. Bhattacharya, A. et al. The metal–insulator transition and its relation to magnetic structure in (LaMnO3)2n/(SrMnO3)n superlattices. Phys. Rev. Lett. 100, 257203 (2008).

    Article  CAS  Google Scholar 

  6. Ueda, K., Tabata, H. & Kawai, T. Ferromagnetism in LaFeO3–LaCrO3 superlattices. Science 280, 1064–1066 (1998).

    Article  CAS  Google Scholar 

  7. Warusawithana, M. P., Colla, E. V., Eckstein, J. N. & Weissman, M. B. Artificial dielectric superlattices with broken inversion symmetry. Phys. Rev. Lett. 90, 036802 (2003).

    Article  Google Scholar 

  8. Lee, H. N., Christen, H. M., Chisholm, M. F., Rouleau, C. M. & Lowndes, D. H. Strong polarization enhancement in asymmetric three-component ferroelectric superlattices. Nature 433, 395–399 (2005).

    Article  CAS  Google Scholar 

  9. Salvador, P. A., Haghiri-Gosnet, A.-M., Mercey, B., Hervieu, M. & Raveau, B. Growth and magnetoresistive properties of (LaMnO3)m(SrMnO3)n . Appl. Phys. Lett. 75, 2638–2640 (1999).

    Article  CAS  Google Scholar 

  10. Griffiths, R. B. Nonanalytic behavior above the critical point in a random Ising ferromagnet. Phys. Rev. Lett. 23, 17–19 (1969).

    Article  Google Scholar 

  11. Burgy, J., Mayr, M., Martin-Mayor, V., Moreo, A. & Dagotto, E. Colossal effects in transition metal oxides caused by intrinsic inhomogeneities. Phys. Rev. Lett. 87, 277202 (2001).

    Article  CAS  Google Scholar 

  12. Zener, C. Interaction between d-shells in the transition metal. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82, 403–405 (1951).

    Article  CAS  Google Scholar 

  13. Tokura, Y. & Tomioka, Y. Colossal magnetoresistive manganites. J. Magn. Magn. Mater. 200, 1–23 (1999).

    Article  CAS  Google Scholar 

  14. Salamon, M. B., Lin, P. & Chun, S. H. Colossal magnetoresistance is a Griffiths singularity. Phys. Rev. Lett. 88, 197203 (2002).

    Article  CAS  Google Scholar 

  15. Deisenhofer, J. et al. Observation of a Griffiths phase in paramagnetic La1−xSrxMnO3 . Phys. Rev. Lett. 95, 257202 (2005).

    Article  CAS  Google Scholar 

  16. Rodriguez-Martinez, L. M. & Attfield, J. P. Cation disorder and size effects in magnetoresistive manganese oxide perovskites. Phys. Rev. B 54, R15622–R15625 (1996).

    Article  CAS  Google Scholar 

  17. Millange, F., Caignaert, V., Domenges, B., Raveau, B. & Suard, E. Order–disorder phenomena in new LaBaMn2O6 perovskites. Crystal and magnetic structure. Chem. Mater. 10, 1974–1983 (1998).

    Article  CAS  Google Scholar 

  18. Akahoshi, D. et al. Random potential effect near the bicritical region in perovskite manganites as revealed by comparison with the ordered perovskite analogs. Phys. Rev. Lett. 90, 177203 (2003).

    Article  CAS  Google Scholar 

  19. Hemberger, J. et al. Structural, magnetic, and electrical properties of single crystalline La1−xSrxMnO3 (0.4<x<0.85). Phys. Rev. B 66, 094410 (2002).

    Article  Google Scholar 

  20. Chmaissem, O. et al. Structural and magnetic phase diagrams of La1−xSrxMnO3 and Pr1−ySryMnO3 . Phys. Rev. B 67, 094431 (2003).

    Article  Google Scholar 

  21. Fujishiro, H., Fukase, T. & Ikebe, M. Charge ordering and sound velocity anomaly in La1−xSrxMnO3 (x≥0.5). J. Phys. Soc. Jpn 67, 2582–2585 (1998).

    Article  CAS  Google Scholar 

  22. Tokura, Y. & Nagaosa, N. Orbital physics in transition-metal oxides. Science 288, 462–468 (2000).

    Article  CAS  Google Scholar 

  23. Konishi, Y. et al. Orbital-state-mediated phase-control of manganites. J. Phys. Soc. Jpn 68, 3790–3793 (1999).

    Article  CAS  Google Scholar 

  24. Fang, Z., Solovyev, I. V. & Terakura, K. Phase diagram of tetragonal manganites. Phys. Rev. Lett. 84, 3169–3172 (2000).

    Article  CAS  Google Scholar 

  25. Goodenough, J. B. Magnetism and the Chemical Bond Ch. 3 (Interscience, 1963).

    Google Scholar 

  26. Bhattacharya, A., Zhai, X., Warusawithana, M., Eckstein, J. N. & Bader, S. D. Signatures of enhanced ordering temperatures in digital superlattices of (LaMnO3)m/(SrMnO3)2m . Appl. Phys. Lett. 90, 222503 (2007).

    Article  Google Scholar 

  27. Gupta, A. et al. Growth and giant magnetoresistance properties of La-deficient LaxMnO3−δ (0.67<x<1) films. Appl. Phys. Lett. 67, 3494–3496 (1995).

    Article  CAS  Google Scholar 

  28. Töpfer, J. & Goodenough, J. B. LaMnO3+δ revisited. J. Solid State Chem. 130, 117 (1997).

    Article  Google Scholar 

  29. May, S. J., Santos, T. S. & Bhattacharya, A. Onset of metallic behavior in strained (LaNiO3)n/(SrMnO3)2 superlattices. Phys. Rev. B 79, 115127 (2009).

    Article  Google Scholar 

  30. Chmaissem, O. et al. Relationship between structural parameters and the Néel temperature in Sr1−xCaxMnO3 (0≤x≤1) and Sr1−yBayMnO3 (y≤0.2). Phys. Rev. B 64, 134412 (2001).

    Article  Google Scholar 

  31. Lin, C., Okamoto, S. & Millis, A. Dynamical mean-field study of model double-exchange superlattices. Phys. Rev. B 73, 041104R (2006).

    Article  Google Scholar 

  32. Lin, C. & Millis, A. Theory of manganite superlattices. Phys. Rev. B 78, 184405 (2008).

    Article  Google Scholar 

  33. Chatterji, T. Neutron Scattering from Magnetic Materials Ch. 2 (Elsevier, 2006).

    Google Scholar 

  34. Radaelli, P. G. et al. Simultaneous structural, magnetic, and electronic transitions in La1−xCaxMnO3 with x=0.25 and 0.50. Phys. Rev. Lett. 75, 4488–4491 (1995).

    Article  CAS  Google Scholar 

  35. Kuwahara, H., Okuda, T., Tomioka, Y., Asamitsu, A. & Tokura, Y. Two-dimensional charge-transport and spin-valve effect in the layered antiferromagnet Nd0.45Sr0.55MnO3 . Phys. Rev. Lett. 82, 4316–4319 (1999).

    Article  CAS  Google Scholar 

  36. Budai, J. D. et al. Preferred alignment of twin boundaries in YBa2Cu3Ox thin films and YBa2Cu3Ox/PrBa2Cu3Ox superlattices on SrTiO3 . Appl. Phys. Lett. 58, 2174–2176 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to M. Fitzsimmons for discussions. Work at Argonne, including use of the Advanced Photon Source and the Center for Nanoscale Materials, was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract No DE-AC02-06CH11357. Work at Oak Ridge National Laboratory’s High Flux Isotope Reactor was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy.

Author information

Authors and Affiliations

Authors

Contributions

J.L.R., S.J.M., J.L.Z., A.B. and S.G.E.teV. carried out the neutron scattering measurements and analysis. The X-ray measurements and analysis were carried out by J.-W.K., S.J.M. and E.K. led by P.J.R. The transport and magnetization measurements were made by S.J.M. and A.B. Thin-film synthesis was carried out at UIUC by A.B., X.Z. and J.N.E., and at Argonne by S.J.M., T.S.S. and A.B. The paper was written by S.J.M., P.J.R., S.D.B. and A.B. All coauthors contributed to interpreting the data and refining the paper. The entire project was guided by A.B.

Corresponding author

Correspondence to A. Bhattacharya.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1256 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

May, S., Ryan, P., Robertson, J. et al. Enhanced ordering temperatures in antiferromagnetic manganite superlattices. Nature Mater 8, 892–897 (2009). https://doi.org/10.1038/nmat2557

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2557

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing