Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants

Abstract

Corrosion is normally an undesirable phenomenon in engineering applications. In the field of biomedical applications, however, implants that ‘biocorrode’ are of considerable interest. Deploying them not only abrogates the need for implant-removal surgery, but also circumvents the long-term negative effects of permanent implants1. In this context magnesium is an attractive biodegradable material, but its corrosion is accompanied by hydrogen evolution2, which is problematic in many biomedical applications. Whereas the degradation and thus the hydrogen evolution of crystalline Mg alloys can be altered only within a very limited range, Mg-based glasses offer extended solubility for alloying elements plus a homogeneous single-phase structure, both of which may alter corrosion behaviour significantly3,4. Here we report on a distinct reduction in hydrogen evolution in Zn-rich MgZnCa glasses. Above a particular Zn-alloying threshold (≈28 at.%), a Zn- and oxygen-rich passivating layer forms on the alloy surface, which we explain by a model based on the calculated Pourbaix diagram of Zn in simulated body fluid. We document animal studies that confirm the great reduction in hydrogen evolution and reveal the same good tissue compatibility as seen for crystalline Mg implants. Thus, the glassy Mg60+xZn35−xCa5 (0≤x≤7) alloys show great potential for deployment in a new generation of biodegradable implants.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Corrosion and electrochemical measurements of glassy MgZnCa alloys.
Figure 2: SEM micrographs of surface corrosion and model explaining this corrosion behaviour.
Figure 3: XRD spectra of glassy Mg60Zn35Ca5, Mg67Zn28Ca5 and Mg74Zn21Ca5 alloys after immersion in SBF for various periods.
Figure 4: Animal studies of Mg-based glass in comparison with a crystalline Mg alloy reference sample.

References

  1. Erne, P., Schier, M. & Resink, T. J. The road to bioabsorbable stents: Reaching clinical reality? Cardiovasc. Inter. Rad. 29, 11–16 (2006).

    Article  Google Scholar 

  2. Witte, F. et al. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials 27, 1013–1018 (2006).

    CAS  Article  Google Scholar 

  3. Song, G. L. & Atrens, A. Understanding magnesium corrosion—a framework for improved alloy performance. Adv. Eng. Mater. 5, 837–858 (2003).

    CAS  Article  Google Scholar 

  4. Scully, J. R., Gebert, A. & Payer, J. H. Corrosion and related mechanical properties of bulk metallic glasses. J. Mater. Res. 22, 302–313 (2007).

    CAS  Article  Google Scholar 

  5. Staiger, M. P., Pietak, A. M., Huadmai, J. & Dias, G. Magnesium and its alloys as orthopaedic biomaterials: A review. Biomaterials 27, 1728–1734 (2006).

    CAS  Article  Google Scholar 

  6. Heublein, B. et al. Biocorrosion of magnesium alloys: A new principle in cardiovascular implant technology? Heart 89, 651–656 (2003).

    CAS  Article  Google Scholar 

  7. Erbel, R. et al. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: A prospective, non-randomised multicentre trial. Lancet 369, 1869–1875 (2007).

    CAS  Article  Google Scholar 

  8. Hermawan, H., Alamdari, H., Mantovani, D. & Dubé, D. Iron–manganese: New class of metallic degradable biomaterials prepared by powder metallurgy. Powder Metall. 51, 38–45 (2008).

    CAS  Article  Google Scholar 

  9. Peuster, M. et al. Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials 27, 4955–4962 (2006).

    CAS  Article  Google Scholar 

  10. McBride, E. D. Magnesium screw and nail transfixation in fractures. South. Med. J. 31, 508–515 (1938).

    Article  Google Scholar 

  11. Verbrugge, J. La tolérance du tissu osseux vis-à-vis du magnésium métallique. Presse Méd. 55, 1112–1114 (1933).

    Google Scholar 

  12. Verbrugge, J. Le matériel métallique résorbable en chirurgie osseuse. Presse Méd. 23, 460–465 (1934).

    Google Scholar 

  13. Witte, F. et al. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 26, 3557–3563 (2005).

    CAS  Article  Google Scholar 

  14. Peeters, P., Bosiers, M., Verbist, J., Deloose, K. & Heublein, B. Preliminary results after application of absorbable metal stents in patients with critical limb ischemia. J. Endovasc. Ther. 12, 1–5 (2005).

    Article  Google Scholar 

  15. Di Mario, C. et al. Drug-eluting bioabsorbable magnesium stent. J. Interv. Cardiol. 17, 391–395 (2004).

    Google Scholar 

  16. Song, G. L., Atrens, A. & StJohn, D. in Magnesium Technol. (ed. Hryn, J. N.) 255–262 (TMS, 2001).

    Google Scholar 

  17. Song, G. L. & Atrens, A. Corrosion mechanisms of magnesium alloys. Adv. Eng. Mater. 1, 11–33 (1999).

    CAS  Article  Google Scholar 

  18. Inoue, A. in Bulk Amorphous Alloys, Preparation and Fundamental Characteristics (eds Magini, M. & Wohlbier, F. H.) (Trans Tech Publications, 1998).

    Google Scholar 

  19. Johnson, W. L. Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24, 42–56 (1999).

    CAS  Article  Google Scholar 

  20. Löffler, J. F. Bulk metallic glasses. Intermetallics 11, 529–540 (2003).

    Article  Google Scholar 

  21. Greer, A. L. & Ma, E. Bulk metallic glasses: At the cutting edge of metals research. MRS Bull. 32, 611–615 (2007).

    CAS  Article  Google Scholar 

  22. Li, Y. et al. Formation of bulk metallic glasses and their composites. MRS Bull. 32, 624–628 (2007).

    CAS  Article  Google Scholar 

  23. Greer, A. L. Metallic glasses... on the threshold. Mater. Today 12, 14–22 (2009).

    CAS  Article  Google Scholar 

  24. Gu, X., Shiflet, G. J., Guo, F. Q. & Poon, S. J. Mg–Ca–Zn bulk metallic glasses with high strength and significant ductility. J. Mater. Res. 20, 1935–1938 (2005).

    CAS  Article  Google Scholar 

  25. Zhao, Y. Y., Ma, E. & Xu, J. Reliability of compressive fracture strength of Mg–Zn–Ca bulk metallic glasses: Flaw sensitivity and Weibull statistics. Scr. Mater. 58, 496–499 (2008).

    CAS  Article  Google Scholar 

  26. Zberg, B., Arata, E. R., Uggowitzer, P. J. & Löffler, J. F. Tensile properties of glassy MgZnCa wires and reliability analysis using Weibull statistics. Acta Mater. 57, 3223–3231 (2009).

    CAS  Article  Google Scholar 

  27. Hänzi, A. C. et al. Design strategy for microalloyed ultra-ductile magnesium alloys. Phil. Mag. Lett. 89, 377–390 (2009).

    Article  Google Scholar 

  28. Löffler, J. F., Kündig, A. A. & Dalla Torre, F. H. in Materials Processing Handbook (eds Groza, J. R., Shackelford, J. F., Lavernia, E. J. & Powers, M. T.) (CRC Press, 2007).

    Google Scholar 

  29. Müller, L. & Müller, F. A. Preparation of SBF with different HCO3 content and its influence on the composition of biomimetic apatites. Acta Biomater. 2, 181–189 (2006).

    Article  Google Scholar 

  30. Rettig, R. & Virtanen, S. Composition of corrosion layers on a magnesium rare-earth alloy in simulated body fluids. J. Biomed. Mater. Res. A 88A, 359–369 (2009).

    CAS  Article  Google Scholar 

  31. Hänzi, A. C., Sologubenko, A. S. & Uggowitzer, P. J. Design strategy for new bioabsorbable Mg–Y–Zn alloys for medical applications. Int. J. Mater. Res. 100, 1127–1136 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support of the Swiss Innovation Promotion Agency (CTI Project 7616.2 LSPP-LS).

Author information

Authors and Affiliations

Authors

Contributions

B.Z. was responsible for the experimental work. P.J.U. and J.F.L. designed the research and J.F.L. supervised the project. All authors contributed to the interpretation of the results and to the writing of the paper.

Corresponding author

Correspondence to Jörg F. Löffler.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zberg, B., Uggowitzer, P. & Löffler, J. MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nature Mater 8, 887–891 (2009). https://doi.org/10.1038/nmat2542

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2542

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing