Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Morphology-dependent zeolite intergrowth structures leading to distinct internal and outer-surface molecular diffusion barriers


Zeolites play a crucial part in acid–base heterogeneous catalysis. Fundamental insight into their internal architecture is of great importance for understanding their structure–function relationships. Here, we report on a new approach correlating confocal fluorescence microscopy with focused ion beam–electron backscatter diffraction, transmission electron microscopy lamelling and diffraction, atomic force microscopy and X-ray photoelectron spectroscopy to study a wide range of coffin-shaped MFI-type zeolite crystals differing in their morphology and chemical composition. This powerful combination demonstrates a unified view on the morphology-dependent MFI-type intergrowth structures and provides evidence for the presence and nature of internal and outer-surface barriers for molecular diffusion. It has been found that internal-surface barriers originate not only from a 90 mismatch in structure and pore alignment but also from small angle differences of 0.5–2 for particular crystal morphologies. Furthermore, outer-surface barriers seem to be composed of a silicalite outer crust with a thickness varying from 10 to 200 nm.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Internal architecture and crystallographic orientations of MFI-type zeolite crystals.
Figure 2: Statistical analysis of the relationship between morphology and internal architecture.
Figure 3: Schematic representation of the proposed evolution of MFI-type crystal growth.
Figure 4: TEM lamella preparation and analysis.
Figure 5: Visualization of the distinct internal diffusion barriers.
Figure 6: AFM and XPS characterization of the zeolite surface.


  1. Corma, A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chem. Rev. 95, 559–614 (1995).

    Article  CAS  Google Scholar 

  2. Corma, A. & Martinez, A. Zeolites and zeotypes as catalysts. Adv. Mater. 7, 137–144 (1995).

    Article  CAS  Google Scholar 

  3. den Hollander, M. A., Wissink, M., Makkee, M. & Moulijn, J. A. Gasoline conversion: Reactivity towards cracking with equilibrated FCC and ZSM-5 catalysts. Appl. Catal. A 223, 85–102 (2002).

    Article  CAS  Google Scholar 

  4. Quann, R. J., Green, L. A., Tabak, S. A. & Krambeck, F. J. Chemistry of olefin oligomerization over ZSM-5 catalyst. Ind. Eng. Chem. Res. 27, 565–570 (1988).

    Article  CAS  Google Scholar 

  5. Wu, X. C. & Anthony, R. G. Alkylation of benzene with formaldehyde over ZSM-5. J. Catal. 184, 294–297 (1999).

    Article  CAS  Google Scholar 

  6. Price, G. D., Pluth, J. J., Smith, J. V., Bennett, J. M. & Patton, R. L. Crystal structure of tetrapropylammonium fluoride containing precursor to fluoride silicalite. J. Am. Chem. Soc. 104, 5971–5977 (1982).

    Article  CAS  Google Scholar 

  7. Weidenthaler, C., Fischer, R. X., Shannon, R. D. & Medenbach, O. Optical investigations of intergrowth effects in the zeolite catalysts ZSM-5 and ZSM-8. J. Phys. Chem. 98, 12687–12694 (1994).

    Article  CAS  Google Scholar 

  8. Kocirik, M. et al. Investigation of sorption and transport of sorbate molecules in crystals of MFI structure type by iodine indicator technique. Micropor. Mesopor. Mater. 23, 295–308 (1998).

    Article  CAS  Google Scholar 

  9. Agger, J. R. et al. Silicalite crystal growth investigated by atomic force microscopy. J. Am. Chem. Soc. 125, 830–839 (2003).

    Article  CAS  Google Scholar 

  10. Stavitski, E., Drury, M. R., de Winter, D. A. M., Kox, M. H. F. & Weckhuysen, B. M. Intergrowth structure of zeolite crystals and pore orientation of individual subunits revealed by electron backscatter diffraction/focused ion beam experiments. Angew. Chem. Int. Ed. 47, 5637–5640 (2008).

    Article  CAS  Google Scholar 

  11. Kox, M. H. F., Stavitski, E. & Weckhuysen, B. M. Nonuniform catalytic behavior of zeolite crystals as revealed by in situ optical microspectroscopy. Angew. Chem. Int. Ed. 46, 3652–3655 (2007).

    Article  Google Scholar 

  12. Stavitski, E., Kox, M. H. F. & Weckhuysen, B. M. Revealing shape selectivity and catalytic activity trends within the pores of H-ZSM-5 crystals by time- and space-resolved optical and fluorescence microspectroscopy. Chem. Eur. J. 13, 7057–7065 (2007).

    Article  CAS  Google Scholar 

  13. Caro, J. et al. Selective sorption uptake kinetics of n-hexane on ZSM-5—a new method for measuring anisotropic diffusivities. J. Phys. Chem. 97, 13685–13690 (1993).

    Article  CAS  Google Scholar 

  14. Hay, D. G., Jaeger, H. & Wilshier, K. G. Systematic intergrowth in crystals of ZSM-5 zeolite. Zeolites 10, 571–576 (1990).

    Article  CAS  Google Scholar 

  15. Roeffaers, M. B. J. et al. Morphology of large ZSM-5 crystals unravelled by fluorescence microscopy. J. Am. Chem. Soc. 130, 5763–5772 (2008).

    Article  CAS  Google Scholar 

  16. Roeffaers, M. B. J. et al. Relating pore structure to activity at the subcrystal level for ZSM-5: An electron backscattering diffraction and fluorescence microscopy study. J. Am. Chem. Soc. 130, 13516–13517 (2008).

    Article  CAS  Google Scholar 

  17. Karwacki, L., Stavitski, E., Kox, M. H. F., Kornatowski, J. & Weckhuysen, B. M. Intergrowth structure of zeolitic crystals as determined by optical and fluorescence microscopy of the template removal process. Angew. Chem. Int. Ed. 46, 7228–7231 (2007).

    Article  CAS  Google Scholar 

  18. Chmelik, C. et al. Effect of surface modification on uptake rates of isobutane in MFI crystals: An infrared microscopy study. Chem. Mater. 19, 6012–6019 (2007).

    Article  CAS  Google Scholar 

  19. Wloch, J. & Kornatowski, J. Sorption rate and thermal barriers in AgAs–zeolite system: Investigation of n-hexane sorption in MFI-type zeolite. Langmuir 20, 1180–1183 (2004).

    Article  CAS  Google Scholar 

  20. Tzoulaki, D., Heinke, L., Schmidt, W., Wilczok, U. & Karger, J. Exploring crystal morphology of nanoporous hosts from time-dependent guest profiles. Angew. Chem. Int. Ed. 47, 3954–3957 (2008).

    Article  CAS  Google Scholar 

  21. Weckhuysen, B. M. Chemical imaging of spatial heterogeneities in catalytic solids at different length and time scales. Angew. Chem. Int. Ed. 48, 4910–4943 (2009).

    Article  CAS  Google Scholar 

  22. Dorset, D. L. Electron crystallography of zeolites. 1. Projected crystal structures of ZSM-5 and ZSM-11. Z. Kristallogr. 218, 458–465 (2003).

    CAS  Google Scholar 

  23. Dorset, D. L., Gilmore, C. J., Jorda, J. L. & Nicolopoulos, S. Direct electron crystallographic determination of zeolite zonal structures. Ultramicroscopy 107, 462–473 (2007).

    Article  CAS  Google Scholar 

  24. Seebacher, C. et al. Visualization of mesostructures and organic guest inclusion in molecular sieves with confocal microscopy. Adv. Mater. 13, 1374–1377 (2001).

    Article  CAS  Google Scholar 

  25. Wloch, J. Effect of surface etching of ZSM-5 zeolite crystals on the rate of n-hexane sorption. Micropor. Mesopor. Mater. 62, 81–86 (2003).

    Article  CAS  Google Scholar 

  26. Kortunov, P. et al. Influence of defects on the external crystal surface on molecular uptake into MFI-type zeolites. Chem. Mater. 16, 3552–3558 (2004).

    Article  CAS  Google Scholar 

  27. Derouane, E. G., Detremmerie, S., Gabelica, Z. & Blom, N. Synthesis and characterization of ZSM-5 type zeolites I. Physico-chemical properties of precursors and intermediates. Appl. Catal. 1, 201–224 (1981).

    Article  CAS  Google Scholar 

  28. von Ballmoos, R. & Meier, W. M. Zoned aluminium distribution in synthetic zeolite ZSM-5. Nature 289, 782–783 (1981).

    Article  CAS  Google Scholar 

Download references


We thank NWO (VICI, VENI and TOP grants) for financial support and a large investment subsidy for the Dualbeam microscope. The authors thank A. W. Burton and S. I. Zones (Chevron) for discussions and M. Versluijs-Helder for SEM-EDX.

Author information

Authors and Affiliations



L.K. carried out the confocal fluorescence and AFM measurements and statistical analysis of the morphology/internal-architecture relation, and contributed to the analysis of the TEM lamella and writing of the manuscript. M.H.F.K. worked on the acquiring of the FIB-EBSD data and carried out the staining experiments as well as TEM and XPS data analysis and writing of the manuscript. D.A.M.W. carried out the FIB-EBSD experiments and prepared the TEM lamella. M.R.D. carried out the EBSD data analysis, TEM lamella experiments and TEM data analysis. J.D.M. carried out the TEM lamella experiments. E.S. participated in the manuscript preparation. W.S., M.M. and N.J. synthesized and provided zeolite samples. P.C. and M.A. contributed to the AFM measurements, crystal growth analysis and discussion on the AFM results. A.C., N.K. and S.R.B. developed and carried out the XPS measurements. J.K. synthesized and provided zeolite samples and contributed to the manuscript preparation. B.M.W. designed and directed the research, as well as contributing to the preparation and writing of the manuscript.

Corresponding author

Correspondence to Bert M. Weckhuysen.

Supplementary information

Supplementary Information

Supplementary Information (PDF 7507 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Karwacki, L., Kox, M., Matthijs de Winter, D. et al. Morphology-dependent zeolite intergrowth structures leading to distinct internal and outer-surface molecular diffusion barriers. Nature Mater 8, 959–965 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing