Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanoscale manipulation of the properties of solids at high pressure with relativistic heavy ions

Abstract

High-pressure and high-temperature phases show unusual physical and chemical properties, but they are often difficult to ‘quench’ to ambient conditions1. Here, we present a new approach, using bombardment with very high-energy, heavy ions accelerated to relativistic velocities, to stabilize a high-pressure phase. In this case, Gd2Zr2O7, pressurized in a diamond-anvil cell up to 40 GPa, was irradiated with 20 GeV xenon or 45 GeV uranium ions, and the (previously unquenchable) cubic high-pressure phase was recovered after release of pressure. Transmission electron microscopy revealed a radiation-induced, nanocrystalline texture. Quantum-mechanical calculations confirm that the surface energy at the nanoscale is the cause of the remarkable stabilization of the high-pressure phase. The combined use of high pressure and high-energy ion irradiation2,3 provides a new means for manipulating and stabilizing new materials to ambient conditions that otherwise could not be recovered.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Synchrotron XRD images and integrated patterns of Gd2Zr2O7 obtained at different combinations of pressure and irradiation.
Figure 2: Synchrotron XRD pattern of the X-phase recovered from 20 GPa after irradiation with 7-GeV uranium ions.
Figure 3: High-resolution TEM images of Gd2Zr2O7 recovered from 40 GPa.
Figure 4: Quantum-mechanical calculations of the potential energy of different Gd2Zr2O7 structure types as a function of grain size, H.

References

  1. McMillan, P. F. New materials from high-pressure experiments. Nature Mater. 1, 19–25 (2002).

    CAS  Article  Google Scholar 

  2. Glasmacher, U. A. et al. Phase transitions in solids stimulated by simultaneous exposure to high pressure and relativistic heavy ions. Phys. Rev. Lett. 96, 195701 (2006).

    Article  Google Scholar 

  3. Lang, M. et al. Fission tracks simulated by swift heavy ions at crustal pressures and temperatures. Earth Planet. Sci. Lett. 274, 355–358 (2008).

    CAS  Article  Google Scholar 

  4. Liu, L. G. & Bassett, W. A. Elements, Oxides, and Silicate: High-Pressure Phases with Implications for the Earth’s Interior 134 (Oxford Univ. Press, 1986).

    Google Scholar 

  5. Murakami, M., Hirose, K., Kawamura, K., Sata, N. & Ohishi, Y. Post-perovskite phase transition in MgSiO3 . Science 304, 855–858 (2004).

    CAS  Article  Google Scholar 

  6. Hemley, R. J. & Ashcroft, N. W. The revealing role of pressure in the condensed matter sciences. Phys. Today 51, 26–32 (1998).

    CAS  Article  Google Scholar 

  7. Liu, H. et al. Anomalous high-pressure behaviour of amorphous selenium from synchrotron X-ray diffraction and microtomography. Proc. Natl Acad. Sci. 105, 13229–13234 (2008).

    CAS  Article  Google Scholar 

  8. Ahart, M. et al. Origin of morphotropic phase boundaries in ferroelectrics. Nature 451, 545–548 (2008).

    CAS  Article  Google Scholar 

  9. Chung, H.-Y. et al. Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure. Science 316, 436–439 (2007).

    CAS  Article  Google Scholar 

  10. Mao, W. L. et al. Bonding changes in compressed superhard graphite. Science 302, 425–427 (2003).

    CAS  Article  Google Scholar 

  11. Shimizu, K. New superconductors under very high pressure. J. Phys. Condens. Matter 19, 125207 (2007).

    Article  Google Scholar 

  12. Hemley, R. J., Chen, Y.-C. & Yan, C.-S. Growing diamond crystals by chemical vapor deposition. Elements 1, 105–108 (2005).

    CAS  Article  Google Scholar 

  13. Sigmund, P. (ed.) Ion Beam Science: Solved and Unsolved Problems (The Royal Danish Academy of Sciences and Letters, 2006).

  14. Subramanian, M. A., Aravamudan, G. & Subba Rao, G. V. Oxide pyrochlores—a review. Prog. Solid State Chem. 15, 55–143 (1983).

    CAS  Article  Google Scholar 

  15. Chakoumakos, B. C. Systematics of the pyrochlore structure type, ideal A2B2X6Y. J. Solid State Chem. 53, 120–129 (1984).

    CAS  Article  Google Scholar 

  16. Ewing, R. C., Weber, W. J. & Lian, J. Nuclear waste disposal—pyrochlore (A2B2O7): Nuclear waste form for the immobilization of plutonium and minor actinides. J. Appl. Phys. 95, 5949–5971 (2004).

    CAS  Article  Google Scholar 

  17. Lian, J. et al. The order–disorder transition in ion-irradiated pyrochlore. Acta Mater. 51, 1493–1502 (2003).

    CAS  Article  Google Scholar 

  18. Lang, M. et al. Structural modifications of Gd2Zr2−xTixO7 pyrochlore induced by swift heavy ions: Disordering and amorphization. J. Mater. Res. 24, 1322–1334 (2009).

    CAS  Article  Google Scholar 

  19. Lang, M. et al. Single-ion tracks in Gd2Zr2−xTixO7 pyrochlore irradiated with swift heavy ions. Phys. Rev. B 79, 224105 (2009).

    Article  Google Scholar 

  20. Zhang, F. X. et al. Phase stability and pressure dependence of defect formation in Gd2Ti2O7 and Gd2Zr2O7 pyrochlores. Phys. Rev. Lett. 100, 045503 (2008).

    CAS  Article  Google Scholar 

  21. Zinkevich, M. Thermodynamics of rare earth sesquioxides. Prog. Mater. Sci. 52, 597–647 (2007).

    CAS  Article  Google Scholar 

  22. Burggraaf, A. J., Van Dijk, T. & Verkerk, M. J. Structure and conductivity of pyrochlore and fluorite type solid solutions. Solid State Ion. 5, 519–522 (1981).

    CAS  Article  Google Scholar 

  23. Goodenough, J. B. Ceramic technology: Oxide-ion conductors by design. Nature 404, 821–823 (2000).

    CAS  Article  Google Scholar 

  24. Zhang, J. et al. Liquid-like phase formation in Gd2Zr2O7 by extremely ionizing irradiation. J. Appl. Phys. 105, 113510 (2009).

    Article  Google Scholar 

  25. Navrotsky, A. Thermochemistry of nanomaterials. Rev. Miner. Geochem. 44, 73–103 (2001).

    CAS  Article  Google Scholar 

  26. San-Miguel, A. Nanomaterials under high-pressure. Chem. Soc. Rev. 35, 876–889 (2006).

    CAS  Article  Google Scholar 

  27. Swamy, V. et al. Size-dependent pressure-induced amorphization in nanoscale TiO2 . Phys. Rev. Lett. 96, 135702 (2006).

    Article  Google Scholar 

  28. Boccanfuso, M. et al. Heavy-ion induced damage in fluorite nanopowder. Nucl. Instrum. Methods B 175–177, 590–593 (2001).

    Article  Google Scholar 

  29. Mao, H.-K., Xu, J. & Bell, P. M. Calibration of the ruby pressure gauge to 800 kbar under quasihydrostatic conditions. Geophys. Res. 91, 4673–4676 (1986).

    CAS  Article  Google Scholar 

  30. Holzapfel, W. B. Refinement of the ruby luminescence pressure scale. J. Appl. Phys. 93, 1813–1818 (2003).

    CAS  Article  Google Scholar 

  31. Lang, M. et al. Energy loss of 50-GeV uranium ions in natural diamond. Appl. Phys. A 80, 691–694 (2005).

    CAS  Article  Google Scholar 

  32. SRIM. http://www.srim.org/SRIM/SRIM2006.htm (2006).

  33. Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N. & Häussermann, D. Two-dimensional detector software: From real detector to idealized image or two-theta scan. High Press. Res. 14, 235–248 (1996).

    Article  Google Scholar 

  34. Rodriguez-Carvajal, J. Fullprof 2k, 2001, France.

  35. Hafner, J. Materials simulations using VASP—a quantum perspective to materials science. Comput. Phys. Commun. 177, 6–13 (2007).

    CAS  Article  Google Scholar 

  36. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  37. Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Office of Basic Energy Sciences, USDOE, under grant DE-FG02-97ER45656. The use of the National Synchrotron Light Source at X17C station is supported by NSF COMPRES EAR01-35554 and by USDOE contract DE-AC02-10886. This research was supported in part by the National Science Foundation through TeraGrid resources provided by NCSA and NICS. Further support was provided by the German Science Foundation DFG (grant to M.L.).

Author information

Authors and Affiliations

Authors

Contributions

M.L., F.X.Z. and R.C.E conceived and designed the experiments. C.T., B.S. and R.N. participated in the high-energy irradiations at GSI. M.L. and F.X.Z. analysed the samples by synchrotron XRD. J.Z. completed the TEM analysis and measurements. J.W. and U.B. carried out the quantum-mechanical calculations. All authors have reviewed, discussed and approved the results and conclusions of this letter.

Corresponding author

Correspondence to Rodney C. Ewing.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lang, M., Zhang, F., Zhang, J. et al. Nanoscale manipulation of the properties of solids at high pressure with relativistic heavy ions. Nature Mater 8, 793–797 (2009). https://doi.org/10.1038/nmat2528

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2528

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing