Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrostatic spin crossover effect in polar magnetic molecules

Abstract

The magnetic configuration of a nanostructure can be altered by an external magnetic field, by spin-transfer torque or by its magnetoelastic response. Here, we explore an alternative route, namely the possibility of switching the sign of the exchange coupling between two magnetic centres by means of an electric potential. This general effect, which we name electrostatic spin crossover, occurs in insulating molecules with super-exchange magnetic interaction and inversion symmetry breaking. As an example we present the case of a family of di-cobaltocene-based molecules. The critical fields for switching, calculated from first principles, are of the order of 1 V nm−1 and can be achieved in two-terminal devices. More crucially, such critical fields can be engineered with an appropriate choice of substituents to add to the basic di-cobaltocene unit. This suggests that an easy chemical strategy for achieving the synthesis of suitable molecules is possible.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration of the three-centre four-electron model for super-exchange.
Figure 2: Stark energy gain, ΔEGS, for the singlet and triplet states of a magnetic molecule as a function of the applied electric field, E.
Figure 3: Two of the molecules investigated in this work.
Figure 4: Total-energy calculations as a function of an external electric field.
Figure 5: Planar average of the electrostatic potential of a Au/S–[MeO–diCo]–S/Au junction at different positions.

Similar content being viewed by others

References

  1. Meier, F., Zhou, L., Wiebe, J. & Wiesendanger, R. Revealing magnetic interactions from single-atom magnetization curves. Science 320, 82–86 (2008).

    Article  CAS  Google Scholar 

  2. Hirjibehedin, C. F. et al. Large magnetic anisotropy of a single atomic spin embedded in a surface molecular network. Science 317, 1199–1203 (2007).

    Article  CAS  Google Scholar 

  3. Slonczewski, J. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    Article  CAS  Google Scholar 

  4. Gütlich, P. & Goodwin, H. A. in Spin Crossover in Transition Metal Compounds (eds Gütlich, P. & Goodwin, H. A.) (Springer, 2004).

    Google Scholar 

  5. Sanvito, S. Injecting and controlling spins in organic materials. J. Mater. Chem. 17, 4455–4459 (2007).

    Article  CAS  Google Scholar 

  6. Bogani, L. & Wernsdorfer, W. Molecular spintronics using single-molecule magnets. Nature Mater. 7, 179–186 (2008).

    Article  CAS  Google Scholar 

  7. Mannini, M. et al. Magnetic memory of a single-molecule quantum magnet wired to a gold surface. Nature Mater. 8, 194–197 (2009).

    Article  CAS  Google Scholar 

  8. Timco, G. A. et al. Engineering the coupling between molecular spin qubits by coordination chemistry. Nature Nanotech. 4, 173–178 (2009).

    Article  CAS  Google Scholar 

  9. Diefenbach, M. & Kim, K. S. Towards molecular magnetic switching with an electric bias. Angew. Chem. Int. Ed. 46, 7784–7787 (2007).

    Article  Google Scholar 

  10. Nguyen, P., Gómez-Elipe, P. & Manners, I. Organometalic polymers with transition metals in the main chain. Chem. Rev. 99, 1515–1548 (1999).

    Article  CAS  Google Scholar 

  11. Van Vleck, J. H. Recent developments in the theory of antiferromagnetism. J. Phys. Radium 12, 262–274 (1951).

    Article  Google Scholar 

  12. Liu, R., Ke, S.-H., Baranger, H. U. & Yang, W. Organometallic spintronics: Dicobaltocene switch. Nano Lett. 5, 1959–1962 (2005).

    Article  CAS  Google Scholar 

  13. Ammeter, J. H. & Swalen, J. D. Electronic structure and dynamic Jahn–Teller effect of cobaltocene from EPR and optical studies. J. Chem. Phys. 57, 678–698 (1972).

    Article  CAS  Google Scholar 

  14. Hedberg, A. K., Hedberg, L. & Hedberg, K. Molecular structure of di-π-cyclopentadienylcobalt, (C5H5)2Co, by gaseous electron diffraction. J. Chem. Phys. 63, 1262–1266 (1975).

    Article  CAS  Google Scholar 

  15. Eicher, H. & Köhler, F. W. Determination of the electronic structure, the spin density distribution, and approach to the geometric structure of substituted cobaltocenes from NMR spectroscopy in solution. Chem. Phys. 128, 297–309 (1988).

    Article  CAS  Google Scholar 

  16. Pennanen, T. O. & Vaara, J. Density-functional calculations of relativistic spin–orbit effects on nuclear magnetic shielding in paramagnetic molecules. J. Chem. Phys. 123, 174102 (2005).

    Article  Google Scholar 

  17. Parr, R. G. & Yang, W. Density-Functional Theory of Atoms and Molecules (Oxford Univ. Press, 1989).

    Google Scholar 

  18. Koch, W. & Holthausen, M. A Chemist’s Guide to Density Functional Theory (Wiley–VCH, 2001).

    Book  Google Scholar 

  19. Ahlrichs, R. et al. TURBOMOLE (Vers. 5.9) Universität Karlsruhe, Karlsruhe, Germany. See also: <http://www.turbomole.com> (2007).

  20. Lee, C., Yang, W. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    Article  CAS  Google Scholar 

  21. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  22. de P. R. Moreira, I., Illas, F. & Martin, R. Effect of Fock exchange on the electronic structure and magnetic coupling in NiO. Phys. Rev. B 65, 155102 (2002).

    Article  Google Scholar 

  23. Schottenberger, H., Rieker, C. & Obendorf, D. Electrochemical properties of two new binuclear ethyne-bridged cobalt complexes: bis-[(η5-cyclopentadienyl)cobalt(η4-1,3-cyclopentadienyl-5-exo-yl)]-ethyne (1) and di-cobaltocenylium-ethyne-di-hexafluorophosphate (2). Electrochem. Acta 38, 1527–1533 (1993).

    Article  CAS  Google Scholar 

  24. Rocha, A. R. et al. Towards molecular spintronics. Nature Mater. 4, 335–339 (2005).

    Article  CAS  Google Scholar 

  25. Rocha, A. R. et al. Spin and molecular electronics in atomically-generated orbital landscapes. Phys. Rev. B. 73, 085414 (2006).

    Article  Google Scholar 

  26. <http://www.smeagol.tcd.ie>.

  27. Rungger, I. & Sanvito, S. Algorithm for the construction of self-energies for electronic transport calculations based on singularity elimination and singular value decomposition. Phys. Rev. B 78, 035407 (2008).

    Article  Google Scholar 

  28. Toher, C. & Sanvito, S. Effects of self-interaction corrections on the transport properties of phenyl-based molecular junctions. Phys. Rev. B 77, 155402 (2008).

    Article  Google Scholar 

  29. Toher, C. & Sanvito, S. Efficient atomic self-interaction correction scheme for nonequilibrium quantum transport. Phys. Rev. Lett. 99, 056801 (2007).

    Article  CAS  Google Scholar 

  30. Ginsberg, A. P. Magnetic exchange in transition metal complexes. 12. Calculation of cluster exchange coupling constants with the X-α-scattered wave method. J. Am. Chem. Soc. 102, 111–117 (1980).

    Article  CAS  Google Scholar 

  31. Noodleman, L. Valence bond description of antiferromagnetic coupling in transition metal dimers. J. Chem. Phys. 74, 5737–5743 (1981).

    Article  CAS  Google Scholar 

  32. Soda, T. et al. Ab initio computations of effective exchange integrals for H–H, H–He–H and Mn2O2 complex: Comparison of broken-symmetry approaches. Chem. Phys. Lett. 319, 223–230 (2000).

    Article  CAS  Google Scholar 

  33. Schäfer, A., Huber, C. & Ahlrichs, R. Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J. Chem. Phys. 100, 5829–5835 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the SpiDME European project (6th Framework Program, NEST) and by the ERC-Starting Grant FP7-Project ‘DEDOM’ (No. 207441). S.S. and N.B. acknowledge CRANN for financial support. Computational resources were provided by NNL-SPACI, by the HEA IITAC project managed by the Trinity Centre for High Performance Computing and by ICHEC. The authors would like to thank E. Fabiano for helpful discussions and M. Margarito for technical support.

Author information

Authors and Affiliations

Authors

Contributions

The initial idea of the ESCE was developed by the Dublin team leader, S.S. N.B. and M.P. contributed equally to this work. M.P. carried out the DFT calculations for the exchange coupling constants, and N.B. contributed in developing the simple model and carried out the electric field drop calculations. F.D.S., M.P., S.S. and N.B. designed the molecular structures, and T.T. carried out extra DFT calculations for the exchange coupling. The project was supervised by S.S. and G.M.

Corresponding author

Correspondence to Stefano Sanvito.

Supplementary information

Supplementary Information

Supplementary Information (PDF 456 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baadji, N., Piacenza, M., Tugsuz, T. et al. Electrostatic spin crossover effect in polar magnetic molecules. Nature Mater 8, 813–817 (2009). https://doi.org/10.1038/nmat2525

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2525

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing