Abstract
Organic semiconductors are characterized by a very low spin–orbit interaction, which, together with their chemical flexibility and relatively low production costs, makes them an ideal materials system for spintronics applications. The first experiments on spin injection and transport occurred only a few years ago, and since then considerable progress has been made in improving performance as well as in understanding the mechanisms affecting spin-related phenomena. Nevertheless, several challenges remain in both device performance and fundamental understanding before organic semiconductors can compete with inorganic semiconductors or metals in the development of realistic spintronics applications. In this article we summarize the main experimental results and their connections with devices such as light-emitting diodes and electronic memory devices, and we outline the scientific and technological issues that make organic spintronics a young but exciting field.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Change history
11 September 2009
In Table 1 of the version of this Progress Article originally published, the structures for poly(3-hexylthiophene) (RRP3HT), tetraphenylporphyrin (TPP), pentacene, rubrene and copper phthalocyanine (CuPc) were incorrect. These errors have been corrected in the HTML and PDF versions.
References
Friend, R. H. et al. Electroluminescence in conjugated polymers. Nature 397, 121–128 (1999).
Naber, W. J. M., Faez, S. & van der Wiel, W. G. Organic spintronics. J. Phys. D 40, R205–R228 (2007).
Sanvito, S. Spintronics goes plastic. Nature Mater. 6, 803–804 (2007).
Chappert, C., Fert, A. & Van Dau, F. N. The emergence of spin electronics in data storage. Nature Mater. 6, 813–823 (2007).
Zutic, I., Fabian, J. & Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).
Bratkovsky, A. M. Spintronic effects in metallic, semiconductor, metal-oxide and metal-semiconductor heterostructures. Rep. Prog. Phys. 71, 026502 (2008).
Schmidt, G. Concepts for spin injection into semiconductors - a review. J. Phys. D 38, R107–R122 (2005).
Baibich, M. N. et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988).
Binasch, G., Grünberg, P., Saurenbach, F. & Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989).
Moodera, J. S., Kinder, L. R., Wong, T. M. & Meservey, R. Large magnetoresistance at room-temperature in ferromagnetic thin-film tunnel-junctions. Phys. Rev. Lett. 74, 3273–3276 (1995).
Harris, C. B., Schlupp, R. L. & Schuch, H. Optically detected electron spin locking and rotary echo trains in molecular excited states. Phys. Rev. Lett. 30, 1019–1022 (1973).
Krinichnyi, V. I., Chemerisov, S. D. & Lebedev, Y. S. EPR and charge-transport studies of polyaniline. Phys. Rev. B 55, 16233–16244 (1997).
Rocha, A. R. et al. Towards molecular spintronics. Nature Mater. 4, 335–339 (2005).
Arkhipov, V. I., Emelianova, E. V., Tak, Y. H. & Bassler, H. Charge injection into light-emitting diodes: Theory and experiment. J. Appl. Phys. 84, 848–856 (1998).
Coropceanu, V. et al. Charge transport in organic semiconductors. Chem. Rev. 107, 926–952 (2007).
Mazin, I. I. How to define and calculate the degree of spin polarization in ferromagnets. Phys. Rev. Lett. 83, 1427–1430 (1999).
Scott, J. C. Metal-organic interface and charge injection in organic electronic devices. J. Vac. Sci. Technol. A 21, 521–531 (2003).
Tsymbal, E. Y., Mryasov, O. N. & LeClair, P. R. Spin-dependent tunnelling in magnetic tunnel junctions. J. Phys. Condens. Matter 15, R109–R142 (2003).
De Teresa, J. M. et al. Role of metal-oxide interface in determining the spin polarization of magnetic tunnel junctions. Science 286, 507–509 (1999).
Dediu, V., Murgia, M., Matacotta, F. C., Taliani, C. & Barbanera, S. Room temperature spin polarized injection in organic semiconductor. Solid State Commun. 122, 181–184 (2002).
Evetts, J. E. et al. Defect-induced spin disorder and magnetoresistance in single-crystal and polycrystal rare-earth manganite thin films. Philos. Trans. R. Soc. Lond. A 356, 1593–1613 (1998).
Horowitz, G., Fichou, D., Peng, X. Z., Xu, Z. G. & Garnier, F. A field-effect transistor based on conjugated alpha-sexithienyl. Solid State Commun. 72, 381–384 (1989).
Xiong, Z. H., Wu, D., Vardeny, Z. V. & Shi, J. Giant magnetoresistance in organic spin-valves. Nature 427, 821–824 (2004).
Tang, C. W. & VanSlyke, S. A. Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913–915 (1987).
Wang, F. J., Yang, C. G., Vardeny, Z. V. & Li, X. G. Spin response in organic spin valves based on La2/3Sr1/3MnO3 electrodes. Phys. Rev. B 75, 245324 (2007).
Riminucci, A. et al. Negative spin valve effects in manganite/organic based devices. http://arxiv.org/abs/cond-mat/0701603 (2007).
Dediu, V. et al. Room-temperature spintronic effect in Alq3-based hybrid devices. Phys. Rev. B 78, 115203 (2008).
Majumdar, S., Majumdar, H. S., Laiho, R. & Osterbacka, R. Comparing small molecules and polymer for future organic spin-valves. J. Alloys Compd. 423, 169–171 (2006).
Xu, W. et al. Tunneling magnetoresistance observed in La0.67Sr0.33MnO3/organic molecule/Co junctions. Appl. Phys. Lett. 90, 072506 (2007).
Liu, S.-W., Lee, J.-H., Lee, C.-C., Chen, C.-T. & Wang, J.-K. Charge carrier mobility of mixed-layer organic light-emitting diodes. Appl. Phys. Lett. 91, 142106 (2007).
Morley, N. A. et al. Room temperature organic spintronics. J. Appl. Phys. 103, 07F306 (2008).
Wang, F. J., Xiong, Z. H., Wu, D., Shi, J. & Vardeny, Z. V. Organic spintronics: The case of Fe/Alq3/Co spin-valve devices. Synth. Met. 155, 172–175 (2005).
Park, J.-H. et al. Magnetic properties at surface boundary of a half-metallic ferromagnet La0.7Sr0.3MnO3 . Phys. Rev. Lett. 81, 1953–1956 (1998).
Vinzelberg, H. et al. Low temperature tunneling magnetoresistance on (La, Sr)MnO3/Co junctions with organic spacer layers. J. Appl. Phys. 103, 093720 (2008).
Santos, T. S. et al. Room-temperature tunnel magnetoresistance and spin-polarized tunnelling through an organic semiconductor barrier. Phys. Rev. Lett. 98, 016601 (2007).
Petta, J. R., Slater, S. K. & Ralph, D. C. Spin-dependent transport in molecular tunnel junctions. Phys. Rev. Lett. 93, 136601 (2004).
Ando, Y., Murai, J., Miyashita, T. & Miyazaki, T. Spin dependent tunneling in 80NiFe/LB film with ferrocene and tris(bipyridine)ruthenium derivatives Co junctions. Thin Solid Films 331, 158–164 (1998).
Wang, T. X. et al. Magnetic/nonmagnetic/magnetic tunnel junction based on hybrid organic Langmuir-Blodgett-films. Appl. Phys. Lett. 88, 242505 (2006).
Shim, J. H. et al. Large spin diffusion length in an amorphous organic semiconductor. Phys. Rev. Lett. 100, 226603 (2008).
Jiang, J. S., Pearson, J. E. & Bader, S. D. Absence of spin transport in the organic semiconductor Alq3 . Phys. Rev. B 77, 035303 (2008).
Ouyang, M. & Awschalom, D. D. Coherent spin transfer between molecularly bridged quantum dots. Science 301, 1074–1078 (2003).
Cinchetti, M. et al. Determination of spin injection and transport in a ferromagnet/organic semiconductor heterojunction by two-photon photoemission. Nature Mater. 8, 115–119 (2009).
Drew, A. J. et al. Direct measurement of the electronic spin diffusion length in a fully functional organic spin valve by low-energy muon spin rotation. Nature Mater. 8, 109–114 (2009).
Fiederling, R. et al. Injection and detection of a spin-polarized current in a light-emitting diode. Nature 402, 787–790 (1999).
Motsnyi, V. F. et al. Optical investigation of electrical spin injection into semiconductors. Phys. Rev. B 68, 245319 (2003).
Ohno, Y. et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402, 790–792 (1999).
Bergenti, I. et al. Spin polarised electrodes for organic light emitting diodes. Org. Electron. 5, 309–314 (2004).
Salis, G., Alvarado, S. F., Tschudy, M., Brunschwiler, T. & Allenspach, R. Hysteretic electroluminescence in organic light-emitting diodes for spin injection. Phys. Rev. B 70, 085203 (2004).
Davis, A. H. & Bussmann, K. Organic luminescent devices and magnetoelectronics. J. Appl. Phys. 93, 7358–7360 (2003).
McCamey, D. R. et al. Spin Rabi flopping in the photocurrent of a polymer light-emitting diode. Nature Mater. 7, 723–728 (2008).
Zhan, Y. Q., Bergenti, I., Hueso, L. E. & Dediu, V. Alignment of energy levels at the Alq3/La0.7Sr0.3MnO3 interface for organic spintronic devices. Phys. Rev. B 76, 045406 (2007).
Zhan, Y. Q. et al. Energy level alignment and chemical interaction at Alq3/Co interfaces for organic spintronic devices. Phys. Rev. B 78, 045208 (2008).
Zhan, Y. Q. et al. The role of aluminum oxide buffer layer in organic spin-valves performance. Appl. Phys. Lett. 94, 053301 (2009).
Tiba, M. V., de Jonge, W. J. M., Koopmans, B. & Jonkman, H. T. Morphology and electronic properties of the pentacene on cobalt interface. J. Appl. Phys. 100, 093707 (2006).
Popinciuc, M., Jonkman, H. T. & van Wees, B. J. Energy level alignment symmetry at Co/pentacene/Co interfaces. J. Appl. Phys. 100, 093714 (2006).
Grobosch, M., Dorr, K., Gangineni, R. B. & Knupfer, M. Energy level alignment and injection barriers at spin injection contacts between La0.7Sr0.3MnO3 and organic semiconductors. Appl. Phys. Lett. 92, 023302 (2008).
Emberly, E. G. & Kirczenow, G. Molecular spintronics: spin-dependent electron transport in molecular wires. Chem. Phys. 281, 311–324 (2002).
Pati, R., Senapati, L., Ajayan, P. M. & Nayak, S. K. First-principles calculations of spin-polarized electron transport in a molecular wire: Molecular spin valve. Phys. Rev. B 68, 100407 (2003).
Waldron, D., Haney, P., Larade, B., MacDonald, A. & Guo, H. Nonlinear spin current and magnetoresistance of molecular tunnel junctions. Phys. Rev. Lett. 96, 166804 (2006).
Ren, J. F., Fu, J. Y., Liu, D. S., Mei, L. M. & Xie, S. J. Spin polarized injection and transport in organic polymers. Synth. Met. 155, 611–614 (2005).
Ruden, P. P. & Smith, D. L. Theory of spin injection into conjugated organic semiconductors. J. Appl. Phys. 95, 4898–4904 (2004).
Wei, J. H., Xie, S. J., Mei, L. M., Berakdar, J. & Yan, W. Conductance switching, hysteresis, and magnetoresistance in organic semiconductors. Org. Electron. 8, 487–497 (2007).
Xie, S. J., Ahn, K. H., Smith, D. L., Bishop, A. R. & Saxena, A. Ground-state properties of ferromagnetic metal/conjugated polymer interfaces. Phys. Rev. B 67, 125202 (2003).
Bobbert, P. A., Wagemans, W., van Oost, F. W. A., Koopmans, B. & Wohlgenannt, M. Theory for spin diffusion in disordered organic semiconductors. Phys. Rev. Lett. 102, 156604 (2009).
Francis, T. L., Mermer, O., Veeraraghavan, G. & Wohlgenannt, M. Large magnetoresistance at room temperature in semiconducting polymer sandwich devices. New J. Phys. 6, 185 (2004).
Nguyen, T. D., Sheng, Y. G., Rybicki, J., Veeraraghavan, G. & Wohlgenannt, M. Magnetoresistance in pi-conjugated organic sandwich devices with varying hyperfine and spin-orbit coupling strengths, and varying dopant concentrations. J. Mater. Chem. 17, 1995–2001 (2007).
Bobbert, P. A., Nguyen, T. D., van Oost, F. W. A., Koopmans, B. & Wohlgenannt, M. Bipolaron mechanism for organic magnetoresistance. Phys. Rev. Lett. 99, 216801 (2007).
Liu, Y. et al. Correlation between microstructure and magnetotransport in organic semiconductor spin-valve structures. Phys. Rev. B 79, 075312 (2009).
Majumdar, S. et al. Application of regioregular polythiophene in spintronic devices: Effect of interface. Appl. Phys. Lett. 89, 122114 (2006).
Krinichnyi, V. I. 2-mm Waveband electron paramagnetic resonance spectroscopy of conducting polymers. Synth. Met. 108, 173–222 (2000).
Yang, C. G., Ehrenfreund, E. & Vardeny, Z. V. Polaron spin-lattice relaxation time in pi-conjugated polymers from optically detected magnetic resonance. Phys. Rev. Lett. 99, 157401 (2007).
Ikegami, T. et al. Planar-type spin valves based on low-molecular-weight organic materials with La0.67Sr0.33MnO3 electrodes. Appl. Phys. Lett. 92, 153304 (2008).
Hueso, L. E., Bergenti, I., Riminucci, A., Zhan, Y. Q. & Dediu, V. Multipurpose magnetic organic hybrid devices. Adv. Mater. 19, 2639–2642 (2007).
Scott, J. C. & Bozano, L. D. Nonvolatile memory elements based on organic materials. Adv. Mater. 19, 1452–1463 (2007).
Taliani, C. et al. Organic-inorganic hybrid spin-valve: A novel approach to spintronics. Phase Transit. 75, 1049–1058 (2002).
Pramanik, S. et al. Observation of extremely long spin relaxation times in an organic nanowire spin valve. Nature. Nanotech. 2, 216–219 (2007).
Shimada, T. et al. TI - Magnetotransport properties of Fe/pentacene/Co:TiO2 junctions with Fe top contact electrodes prepared by thermal evaporation and pulsed laser deposition. Jpn. J. Appl. Phys. 47, 1184–1187 (2008).
Acknowledgements
The authors would like to acknowledge the financial support from EU-FP6-STRP 033370 OFSPIN and Organic Spintronics Srl for partial financial support.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Dediu, V., Hueso, L., Bergenti, I. et al. Spin routes in organic semiconductors. Nature Mater 8, 707–716 (2009). https://doi.org/10.1038/nmat2510
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat2510
This article is cited by
-
Slow and non-equilibrium dynamics due to electronic ferroelectricity in a strongly-correlated molecular conductor
npj Spintronics (2024)
-
Strain-restricted transfer of ferromagnetic electrodes for constructing reproducibly superior-quality spintronic devices
Nature Communications (2024)
-
Depth Resolved Magnetic Studies of Fe/57Fe/C60 Bilayer Structure Under X-Ray Standing Wave Condition
Journal of Superconductivity and Novel Magnetism (2024)
-
Electroluminescence of organic poly-TFB/Alq3 light-emitting device
Journal of Optics (2024)
-
Molecular design for enhanced spin transport in molecular semiconductors
Nano Research (2023)