Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Periodic rotation of magnetization in a non-centrosymmetric soft magnet induced by an electric field

Abstract

The control of magnetism with an electric field is a challenging area1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 with the potential to affect fields related to magnetic data storage, sensors and magnetic random access memory. Although there are some successful examples of such control based on the use of magnetic metals and semiconductors, energy loss caused by current flow is a problem that needs to be addressed. In particular, the repeatable control of magnetization with an electric field can be disturbed by joule heat loss. In this regard, non-centrosymmetric insulating magnets are good candidates for controlling magnetization without energy loss, in which the linear magnetoelectric effect has an essential role. Moreover, such magnets exhibit an unconventional magneto-optical effect, which allows the time-resolved detection of the magnetization direction. Here, we show a periodic oscillation of the magnetization direction by ±20 in a non-centrosymmetric soft magnet (Cu,Ni)B2O4, which is induced by an a.c. electric field of 2 kHz. The present study provides a strategy for identifying materials in which the magnetization direction can be modulated at high speed with an electric field.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical detection of the magnetization direction in (Cu,Ni)B2O4.
Figure 2: Control of the magnetization direction in (Cu,Ni)B2O4 at 15 K with an electric field.
Figure 3: Spin dynamics when switching the direction of the electric field.

Similar content being viewed by others

References

  1. Eerenstein, W., Mathur, N. D. & Scott, J. F. Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006).

    Article  CAS  Google Scholar 

  2. Cheong, S. W. & Mostovoy, M. Multiferroics: A magnetic twist for ferroelectricity. Nature Mater. 6, 13–20 (2007).

    Article  CAS  Google Scholar 

  3. Ramesh, R. & Spaldin, N. A. Multiferroics: Progress and prospects in thin films. Nature Mater. 6, 21–29 (2007).

    Article  CAS  Google Scholar 

  4. Ohno, H. et al. Electric-field control of ferromagnetism. Nature 408, 944–946 (2000).

    Article  CAS  Google Scholar 

  5. Chiba, D. et al. Magnetization vector manipulation by electric fields. Nature 455, 515–518 (2008).

    Article  CAS  Google Scholar 

  6. Asamitsu, A., Tomioka, Y., Kuwahara, H. & Tokura, Y. Current switching of resistive states in magnetoresistive manganites. Nature 388, 50–52 (1997).

    Article  CAS  Google Scholar 

  7. Wolf, S. A. et al. Spintronics: A spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    Article  CAS  Google Scholar 

  8. Uchida, K. et al. Observation of the spin Seebeck effect. Nature 455, 778–781 (2008).

    Article  CAS  Google Scholar 

  9. Jonker, B. T. et al. Electrical spin-injection into silicon from a ferromagnetic metal/tunnel barrier contact. Nature Phys. 3, 542–546 (2007).

    Article  CAS  Google Scholar 

  10. Jansen, R. Silicon takes a spin. Nature Phys. 3, 521–522 (2007).

    Article  CAS  Google Scholar 

  11. Ohno, Y. et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402, 790–792 (1999).

    Article  CAS  Google Scholar 

  12. Folen, V. J., Rado, G. T. & Stalder, E. W. Anisotropy of the magnetoelectric effect in Cr2O3 . Phys. Rev. Lett. 6, 607–608 (1961).

    Article  CAS  Google Scholar 

  13. Rado, R. T. Mechanism of the magnetoelectric effect in an antiferromagnet. Phys. Rev. Lett. 6, 609–610 (1961).

    Article  CAS  Google Scholar 

  14. Lottermoser, T. et al. Magnetic phase control by an electric field. Nature 430, 541–544 (2004).

    Article  CAS  Google Scholar 

  15. Ascher, E., Riedel, H., Schmid, H. & Stössel, H. Some properties of ferromagnetic nickel–iodine boracite Ni3B7O13I. J. Appl. Phys. 37, 1404–1405 (1966).

    Article  CAS  Google Scholar 

  16. Chu, Y.-H. et al. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nature Mater. 7, 478–482 (2008).

    Article  CAS  Google Scholar 

  17. Ehrenstein, W. et al. Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures. Nature Mater. 6, 348–351 (2007).

    Article  Google Scholar 

  18. Chung, K. T., Keller, S. & Carman, G. P. Electric-field-induced reversible magnetic single-domain evolution in a magnetoelectric thin film. Appl. Phys. Lett. 94, 132501 (2009).

    Article  Google Scholar 

  19. Martinez-Ripoll, M., Carrera-Martinez, S. & Garcia-Blanco, S. The crystal structure of copper metaborate, CuB2O4 . Acta Crystallogr. B 27, 677–681 (1971).

    Article  CAS  Google Scholar 

  20. Petrakovskii, G. A. et al. Weak ferromagnetism in CuB2O4 copper metaborate. J. Magn. Magn. Mater. 205, 105–109 (1999).

    Article  CAS  Google Scholar 

  21. Petrakovskii, G. A. et al. Synthesis and magnetic properties of copper metaborate single crystals, CuB2O4 . Crystallogr. Rep. 45, 853–856 (2000).

    Article  Google Scholar 

  22. Boehm, M. et al. A neutron scattering and μSR investigation of the magnetic phase transitions of CuB2O4 . Physica B 318, 277–281 (2002).

    Article  CAS  Google Scholar 

  23. Boehm, M. et al. Complex magnetic ground state of CuB2O4 . Phys. Rev. B 68, 024405 (2003).

    Article  Google Scholar 

  24. Petrakovskii, G. A. et al. Effect of substitution on the magnetic properties of CuB2O4 . Phys. Met. Metallogr. 99, S53–S56 (2005).

    Google Scholar 

  25. Saito, M., Taniguchi, K. & Arima, T. Gigantic optical magnetoelectric effect in CuB2O4 . J. Phys. Soc. Japan 77, 013705 (2008).

    Article  Google Scholar 

  26. Saito, M., Ishikawa, K., Taniguchi, K. & Arima, T. Magnetic control of crystal chirality and the existence of a large magneto-optical dichroism effect in CuB2O4 . Phys. Rev. Lett. 101, 117402 (2008).

    Article  CAS  Google Scholar 

  27. Saito, M., Ishikawa, K., Taniguchi, K. & Arima, T. Magnetic controllable CuB2O4 phase retarder. Appl. Phys. Ex. 1, 121302 (2008).

    Article  Google Scholar 

  28. Arima, T. Magneto-electric optics in non-centrosymmetric ferromagnets. J. Phys. Condens. Matter 20, 434211 (2008).

    Article  Google Scholar 

  29. Rikken, G. L. J. A. & Raupavh, E. Observation of magneto-chiral dichroism. Nature 390, 493–494 (1997).

    Article  CAS  Google Scholar 

  30. Barron, L. D. Chirality, magnetism and light. Nature 405, 895–896 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The magnetization measurement was carried out at the Center for Low Temperature Science, Tohoku University. This work was partly supported by Grants-In-Aid for Scientific Research (16076207, 19052001 and 19340089) from MEXT, Japan.

Author information

Authors and Affiliations

Authors

Contributions

M.S. and T.A. designed the study. M.S. and K.T. prepared the samples. M.S. and S.K. made the computer programs for optical measurements. M.S. and K.I. carried out the optical experiments. M.S. and T.A. carried out the magnetization measurement. M.S., K.T. and T.A. discussed the results. S.K. and K.T. commented on the manuscript. M.S. and T.A. wrote the paper.

Corresponding author

Correspondence to T. Arima.

Supplementary information

Supplementary Information

Supplementary Information (PDF 368 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saito, M., Ishikawa, K., Konno, S. et al. Periodic rotation of magnetization in a non-centrosymmetric soft magnet induced by an electric field. Nature Mater 8, 634–638 (2009). https://doi.org/10.1038/nmat2492

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2492

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing