Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The dynamic organic p–n junction

Abstract

Static p–n junctions in inorganic semiconductors are exploited in a wide range of today’s electronic appliances. Here, we demonstrate the in situ formation of a dynamic p–n junction structure within an organic semiconductor through electrochemistry. Specifically, we use scanning kelvin probe microscopy and optical probing on planar light-emitting electrochemical cells (LECs) with a mixture of a conjugated polymer and an electrolyte connecting two electrodes separated by 120 μm. We find that a significant portion of the potential drop between the electrodes coincides with the location of a thin and distinct light-emission zone positioned >30 μm away from the negative electrode. These results are relevant in the context of a long-standing scientific debate, as they prove that electrochemical doping can take place in LECs. Moreover, a study on the doping formation and dissipation kinetics provides interesting detail regarding the electronic structure and stability of the dynamic organic p–n junction, which may be useful in future dynamic p–n junction-based devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram illustrating the probing of a planar LEC device with SKPM.
Figure 2: Light-emission and potential profiles in a planar LEC device during operation.
Figure 3: Experimental data illustrating the formation and reformation of an organic p–n junction.
Figure 4: Schematic diagrams illustrating the electrostatic profile and the electronic and ionic charge distribution within a p–n junction structure established at V =+5 V.

Similar content being viewed by others

References

  1. Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004).

    Article  CAS  Google Scholar 

  2. Malliaras, G. & Friend, R. An organic electronics primer. Phys. Today 58, 53–58 (2005).

    Article  CAS  Google Scholar 

  3. Moller, S., Perlov, C., Jackson, W., Taussig, C. & Forrest, S. R. A polymer/semiconductor write-once read-many-times memory. Nature 426, 166–169 (2003).

    Article  Google Scholar 

  4. Leger, J. M. Organic electronics: The ions have it. Adv. Mater. 20, 837–841 (2008).

    Article  CAS  Google Scholar 

  5. Yazaki, S., Funahashi, M. & Kato, T. An electrochromic nanostructured liquid crystal consisting of pi-conjugated and ionic moieties. J. Am. Chem. Soc. 130, 13206–13207 (2008).

    Article  CAS  Google Scholar 

  6. Gao, L., Johnston, D. & Lonergan, M. C. Synthesis and self-limited electrochemical doping of polyacetylene ionomers. Macromolecules 41, 4071–4080 (2008).

    Article  CAS  Google Scholar 

  7. Wei, D. & Amaratunga, G. Photoelectrochemical cell and its applications in optoelectronics. Int. J. Electrochem. Sci. 2, 897–912 (2007).

    Google Scholar 

  8. Leger, J. M., Patel, D. G., Rodovsky, D. B. & Bartholomew, G. P. Polymer photovoltaic devices employing a chemically fixed p-i-n junction. Adv. Funct. Mater. 18, 1212–1219 (2008).

    Article  CAS  Google Scholar 

  9. Edman, L., Swensen, J., Moses, D. & Heeger, A. J. Toward improved and tunable polymer field-effect transistors. Appl. Phys. Lett. 84, 3744–3746 (2004).

    Article  CAS  Google Scholar 

  10. Lin, F. D. & Lonergan, M. C. Gate electrode processes in an electrolyte-gated transistor: Non-faradaically versus faradaically coupled conductivity modulation of a polyacetylene ionomer. Appl. Phys. Lett. 88, 133507 (2006).

    Article  Google Scholar 

  11. Lu, W. et al. Use of ionic liquids for pi-conjugated polymer electrochemical devices. Science 297, 983–987 (2002).

    Article  CAS  Google Scholar 

  12. Beaujuge, P. M., Ellinger, S. & Reynolds, J. R. The donor–acceptor approach allows a black-to-transmissive switching polymeric electrochrome. Nature Mater. 7, 795–799 (2008).

    Article  CAS  Google Scholar 

  13. Kaihovirta, N. J., Tobjork, D., Makela, T. & Osterbacka, R. European Congress and Exhibition on Advanced Materials and Processes (Euromat 2007) 640–643 (Wiley–VCH, 2007).

    Google Scholar 

  14. Shin, J. H., Xiao, S., Fransson, A. & Edman, L. Polymer light-emitting electrochemical cells: Frozen-junction operation of an ‘ionic liquid’ device. Appl. Phys. Lett. 87, 043506 (2005).

    Article  Google Scholar 

  15. Latini, G. et al. Cyclodextrin-threaded conjugated polyrotaxanes for organic electronics: The influence of the counter cations. Adv. Funct. Mater. 18, 2419–2427 (2008).

    Article  CAS  Google Scholar 

  16. Hohertz, D. & Gao, J. How electrode work function affects doping and electroluminescence of polymer light-emitting electrochemical cells. Adv. Mater. 20, 3298–3302 (2008).

    Article  CAS  Google Scholar 

  17. Alem, S. & Gao, J. The effect of annealing/quenching on the performance of polymer light-emitting electrochemical cells. Org. Electron. 9, 347–354 (2008).

    Article  CAS  Google Scholar 

  18. Pei, Q. B., Yu, G., Zhang, C., Yang, Y. & Heeger, A. J. Polymer light-emitting electrochemical-cells. Science 269, 1086–1088 (1995).

    Article  CAS  Google Scholar 

  19. Gao, J. & Dane, J. Planar polymer light-emitting electrochemical cells with extremely large interelectrode spacing. Appl. Phys. Lett. 83, 3027–3029 (2003).

    Article  CAS  Google Scholar 

  20. Gao, J. & Dane, J. Visualization of electrochemical doping and light-emitting junction formation in conjugated polymer films. Appl. Phys. Lett. 84, 2778–2780 (2004).

    Article  CAS  Google Scholar 

  21. Graber, S. et al. A supramolecularly-caged ionic iridium(III) complex yielding bright and very stable solid-state light-emitting electrochemical cells. J. Am. Chem. Soc. 130, 14944–14945 (2008).

    Article  CAS  Google Scholar 

  22. Shao, Y., Bazan, G. C. & Heeger, A. J. Long-lifetime polymer light-emitting electrochemical cells. Adv. Mater. 19, 365–370 (2007).

    Article  CAS  Google Scholar 

  23. Jin, Y., Bazan, G. C., Heeger, A. J., Kim, J. Y. & Lee, K. Improved electron injection in polymer light-emitting diodes using anionic conjugated polyelectrolyte. Appl. Phys. Lett. 93, 123304 (2008).

    Article  Google Scholar 

  24. Yu, M. X., Kang, J. H. & Cheng, C. H. Synthesis of diarylamino-benzo[de]anthracen-7-ones and their light emitting property. Chin. J. Org. Chem. 28, 1393–1397 (2008).

    CAS  Google Scholar 

  25. Jin, Y. et al. Novel green-light-emitting polymers based on cyclopenta[def]phenanthrene. Macromolecules 41, 5548–5554 (2008).

    Article  CAS  Google Scholar 

  26. Oh, S. H., Vak, D., Na, S. I., Lee, T. W. & Kim, D. Y. Water-soluble polyfluorenes as an electron injecting layer in PLEDs for extremely high quantum efficiency. Adv. Mater. 20, 1624–1629 (2008).

    Article  CAS  Google Scholar 

  27. Sun, J. et al. Pi-conjugated poly(anthracene-alt-fluorene)s with X-shaped repeating units: New blue-light emitting polymers. Polymer 49, 2282–2287 (2008).

    Article  CAS  Google Scholar 

  28. Ortony, J. H. et al. Thermophysical properties of conjugated polyelectrolytes. Adv. Mater. 20, 298–302 (2008).

    Article  CAS  Google Scholar 

  29. Shao, Y., Bazan, G. C. & Heeger, A. J. LED to LEC transition behavior in polymer light-emitting devices. Adv. Mater. 20, 1191–1193 (2008).

    Article  CAS  Google Scholar 

  30. Hoven, C. et al. Ion motion in conjugated polyelectrolyte electron transporting layers. J. Am. Chem. Soc. 129, 10976–10977 (2007).

    Article  CAS  Google Scholar 

  31. Sun, Q. J., Li, Y. F. & Pei, Q. B. Polymer light-emitting electrochemical cells for high-efficiency low-voltage electroluminescent devices. J. Disp. Technol. 3, 211–224 (2007).

    Article  CAS  Google Scholar 

  32. Edman, L. Bringing light to solid-state electrolytes: The polymer light-emitting electrochemical cell. Electrochim. Acta 50, 3878–3885 (2005).

    Article  CAS  Google Scholar 

  33. Shin, J. H. et al. Light emission at 5 V from a polymer device with a millimeter-sized interelectrode gap. Appl. Phys. Lett. 89, 013509 (2006).

    Article  Google Scholar 

  34. Shin, J. H. & Edman, L. Light-emitting electrochemical cells with millimeter-sized interelectrode gap: Low-voltage operation at room temperature. J. Am. Chem. Soc. 128, 15568–15569 (2006).

    Article  CAS  Google Scholar 

  35. Shin, J. H., Robinson, N. D., Xiao, S. & Edman, L. Polymer light-emitting electrochemical cells: Doping concentration, emission-zone position, and turn-on time. Adv. Funct. Mater. 17, 1807–1813 (2007).

    Article  CAS  Google Scholar 

  36. Slinker, J. D. et al. Electroluminescent devices from ionic transition metal complexes. J. Mater. Chem. 17, 2976–2988 (2007).

    Article  CAS  Google Scholar 

  37. Pei, Q. & Heeger, A. J. Operating mechanism of light-emitting electrochemical cells. Nature Mater. 7, 167–167 (2008).

    Article  CAS  Google Scholar 

  38. Pei, Q. B., Yang, Y., Yu, G., Zhang, C. & Heeger, A. J. Polymer light-emitting electrochemical cells: In situ formation of a light-emitting p–n junction. J. Am. Chem. Soc. 118, 3922–3929 (1996).

    Article  CAS  Google Scholar 

  39. Robinson, N. D., Shin, J. H., Berggren, M. & Edman, L. Doping front propagation in light-emitting electrochemical cells. Phys. Rev. B 74, 155210 (2006).

    Article  Google Scholar 

  40. Dick, D. J., Heeger, A. J., Yang, Y. & Pei, Q. B. Imaging the structure of the p–n junction in polymer light-emitting electrochemical cells. Adv. Mater. 8, 985–987 (1996).

    Article  CAS  Google Scholar 

  41. deMello, J. C. Interfacial feedback dynamics in polymer light-emitting electrochemical cells. Phys. Rev. B 66, 235210 (2002).

    Article  Google Scholar 

  42. deMello, J. C., Tessler, N., Graham, S. C. & Friend, R. H. Ionic space-charge effects in polymer light-emitting diodes. Phys. Rev. B 57, 12951–12963 (1998).

    Article  CAS  Google Scholar 

  43. Slinker, J. D. et al. Direct measurement of the electric-field distribution in a light-emitting electrochemical cell. Nature Mater. 6, 894–899 (2007).

    Article  CAS  Google Scholar 

  44. Malliaras, G. G. et al. Operating mechanism of light-emitting electrochemical cells—Authors’ response. Nature Mater. 7, 168–168 (2008).

    Article  CAS  Google Scholar 

  45. Pingree, L. S. C., Rodovsky, D. B., Coffey, D. C., Bartholomew, G. P. & Ginger, D. S. Scanning kelvin probe imaging of the potential profiles in fixed and dynamic planar LECs. J. Am. Chem. Soc. 129, 15903–15910 (2007).

    Article  CAS  Google Scholar 

  46. Fang, J., Matyba, P., Robinson, N. D. & Edman, L. Identifying and alleviating electrochemical side-reactions in light-emitting electrochemical cells. J. Am. Chem. Soc. 130, 4562–4568 (2008).

    Article  CAS  Google Scholar 

  47. Matyba, P., Andersson, M. R. & Edman, L. On the desired properties of a conjugated polymer-electrolyte blend in a light-emitting electrochemical cell. Org. Electron. 9, 699–710 (2008).

    Article  CAS  Google Scholar 

  48. Holt, A. L., Leger, J. M. & Carter, S. A. Electrochemical and optical characterization of p- and n-doped poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]. J. Chem. Phys. 123, 044704 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

L.E. and P.M. acknowledge the Swedish Research Council (VR) and Wenner-Gren stiftelserna for scientific financial support. L.E. is a ‘Royal Swedish Academy of Sciences Research Fellow’ supported by a grant from the Knut and Alice Wallenberg Foundation. N.D.R. acknowledges VR and Norrköpings Kommun for financial support of part of this work. The work of K.M. is made possible by a NanoNed grant (NanoNed is the Dutch nanotechnology initiative by the Ministry of Economic Affairs). The authors acknowledge A. Shchukarev at Umeå University for help with the X-ray photoemission spectroscopy measurements.

Author information

Authors and Affiliations

Authors

Contributions

P.M., K.M. and N.D.R. carried out the experiments. L.E., N.D.R. and M.K. wrote the manuscript. P.M., K.M., M.K., N.D.R. and L.E. contributed to data analysis and project planning.

Corresponding author

Correspondence to Ludvig Edman.

Supplementary information

Supplementary Information

Supplementary Information (PDF 422 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matyba, P., Maturova, K., Kemerink, M. et al. The dynamic organic p–n junction. Nature Mater 8, 672–676 (2009). https://doi.org/10.1038/nmat2478

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2478

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing