Engineering light absorption in semiconductor nanowire devices

Abstract

The use of quantum and photon confinement has enabled a true revolution in the development of high-performance semiconductor materials and devices1,2,3. Harnessing these powerful physical effects relies on an ability to design and fashion structures at length scales comparable to the wavelength of electrons (1 nm) or photons (1 μm). Unfortunately, many practical optoelectronic devices exhibit intermediate sizes4,5 where resonant enhancement effects seem to be insignificant. Here, we show that leaky-mode resonances, which can gently confine light within subwavelength, high-refractive-index semiconductor nanostructures, are ideally suited to enhance and spectrally engineer light absorption in this important size regime. This is illustrated with a series of individual germanium nanowire photodetectors. This notion, together with the ever-increasing control over nanostructure synthesis opens up tremendous opportunities for the realization of a wide range of high-performance, nanowire-based optoelectronic devices, including solar cells6,7,8, photodetectors9,10,11,12,13, optical modulators14 and light sources 14,15.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Measurement of light absorption in individual germanium nanowire devices.
Figure 2: Correlation of the absorption peaks in germanium nanowires with LMR.
Figure 3: Graphs illustrating the tuneability of the absorption efficiency, Qabs, in germanium nanowires.
Figure 4: Polarization dependence of the absorption efficiency, Qabs, and its dependence on nanowire diameter.
Figure 5: Dependence of the absorption efficiency, Qabs, on incident angle.

References

  1. 1

    Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996).

    CAS  Article  Google Scholar 

  2. 2

    Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).

    CAS  Article  Google Scholar 

  3. 3

    Chang, R. K. & Campillo, A. J. (eds) Optical Processes in Microcavities (World Scientific, 1996).

  4. 4

    Grundmann, M. (ed.) Nano-Optoelectronics: Concepts, Physics and Devices (Springer, 2002).

  5. 5

    Pavesi, L. & Lockwood, D. J. (eds) Silicon Photonics (Springer, 2004).

  6. 6

    Kelzenberg, M. D. et al. Photovoltaic measurements in single-nanowire silicon solar cells. Nano Lett. 8, 710–714 (2008).

    CAS  Article  Google Scholar 

  7. 7

    Tian, B. et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885–889 (2007).

    CAS  Article  Google Scholar 

  8. 8

    Garnett, E. C. & Yang, P. Silicon nanowire radial p-n junction solar cells. J. Am. Chem. Soc. 130, 9224–9225 (2008).

    CAS  Article  Google Scholar 

  9. 9

    Ahn, Y., Dunning, J. & Park, J. Scanning photocurrent imaging and electronic band studies in silicon nanowire field effect transistors. Nano Lett. 5, 1367–1370 (2005).

    CAS  Article  Google Scholar 

  10. 10

    Fan, Z., Ho, J. C., Jacobson, Z. A., Razavi, H. & Javey, A. Large-scale, heterogeneous integration of nanowire arrays for image sensor circuitry. Proc. Natl Acad. Sci. USA 105, 11066–11070 (2008).

    CAS  Article  Google Scholar 

  11. 11

    Gu, Y. et al. Near-field scanning photocurrent microscopy of a nanowire photodetector. Appl. Phys. Lett. 87, 043111 (2005).

    Article  Google Scholar 

  12. 12

    Hayden, O., Agarwal, R. & Lieber, C. M. Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection. Nature Mater. 5, 352–356 (2006).

    CAS  Article  Google Scholar 

  13. 13

    Soci, C. et al. ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 7, 1003–1009 (2007).

    CAS  Article  Google Scholar 

  14. 14

    Greytak, A. B., Barrelet, C. J., Li, Y. & Lieber, C. M. Semiconductor nanowire laser and nanowire waveguide electro-optic modulators. Appl. Phys. Lett. 87, 151103 (2005).

    Article  Google Scholar 

  15. 15

    Huang, M. et al. Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897–1899 (2001).

    CAS  Article  Google Scholar 

  16. 16

    Muhlschlegel, P., Eisler, H. J., Martin, O. J. F., Hecht, B. & Pohl, D. W. Resonant optical antennas. Science 308, 1607–1609 (2005).

    CAS  Article  Google Scholar 

  17. 17

    Tang, L. et al. Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna. Nature Photon. 2, 226–229 (2008).

    CAS  Article  Google Scholar 

  18. 18

    Kreibig, U. & Vollmer, M. Optical Properties of Metal Clusters (Springer, 1995).

    Google Scholar 

  19. 19

    Barber, P. W. & Chang, R. K. (eds) Optical Effects Associated with Small Particles (World Scientific, 1988).

  20. 20

    Schuller, J. A., Zia, R., Tauber, T. & Brongersma, M. L. Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles. Phys. Rev. Lett. 99, 107401 (2007).

    Article  Google Scholar 

  21. 21

    Nobis, T., Kaidashev, E. M., Rahm, A., Lorenz, M. & Grundmann, M. Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section. Phys. Rev. Lett. 93, 103903 (2004).

    Article  Google Scholar 

  22. 22

    Cao, L., Nabet, B. & Spanier, J. E. Enhanced Raman scattering from individual semiconductor nanocones and nanowires. Phys. Rev. Lett. 96, 157402 (2006).

    Article  Google Scholar 

  23. 23

    Bao, J., Zimmier, M. A., Capasso, F., Wang, X. & Ren, Z. F. Broadband ZnO single-nanowire light-emitting diode. Nano Lett. 6, 1719–1722 (2006).

    CAS  Article  Google Scholar 

  24. 24

    Wang, J., Gudiksen, M. S., Duan, X., Cui, Y. & Lieber, C. M. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 1455–1457 (2001).

  25. 25

    Snyder, A. W. Optical Waveguide Theory (Springer, 1983).

    Google Scholar 

  26. 26

    Wang, D. & Dai, H. Germanium nanowires: From synthesis, surface chemistry, and assembly to devices. Appl. Phys. A 85, 217–225 (2006).

    CAS  Article  Google Scholar 

  27. 27

    Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles (Wiley, 1998).

    Google Scholar 

  28. 28

    Kuo, Y. et al. Strong quantum-confined stark effect in germanium quantum-well structures on silicon. Nature 437, 1334–1336 (2005).

    CAS  Article  Google Scholar 

  29. 29

    Palik, E. D. Handbook of Optical Constants of Solids (Academic, 1985).

    Google Scholar 

  30. 30

    Hu, L. & Chen, G. Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. Nano Lett. 7, 3249–3252 (2007).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank M. Preiner, S. Fan, F. Wang and Y. Cui for useful discussion during different stages of this project. This work was sponsored by the Si-based Laser Initiative of the Multidisciplinary University Research Initiative (MURI) under the Air Force Aerospace Research OSR Award Number FA9550-06-1-0470 and supervised by LTC Gernot Pomrenke. L.C. acknowledges the 2008 SPIE scholarship in Optical Science and Engineering. J.-S.P. acknowledges financial support from the System IC 2010 program of the Ministry of Knowledge Economy in the Republic of Korea.

Author information

Affiliations

Authors

Contributions

L.C. and M.L.B conceived the experiments. L.C. and J.-S.P. fabricated the nanostructures. L.C. and J.S.W. carried out the optical experiments. L.C., J.S.W., J.A.S. and M.L.B. analysed the data. All authors were involved in writing the manuscript.

Corresponding author

Correspondence to Mark L. Brongersma.

Supplementary information

Supplementary Information

Supplementary Information (PDF 694 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cao, L., White, J., Park, JS. et al. Engineering light absorption in semiconductor nanowire devices. Nature Mater 8, 643–647 (2009). https://doi.org/10.1038/nmat2477

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing