Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Alkali metal crystalline polymer electrolytes

Abstract

Polymer electrolytes have been studied extensively because uniquely they combine ionic conductivity with solid yet flexible mechanical properties, rendering them important for all-solid-state devices including batteries, electrochromic displays and smart windows1,2,3. For some 30 years, ionic conductivity in polymers was considered to occur only in the amorphous state above Tg. Crystalline polymers were believed to be insulators. This changed with the discovery of Li+ conductivity in crystalline poly(ethylene oxide)6:LiAsF6 (refs 4, 5). However, new crystalline polymer electrolytes have proved elusive, questioning whether the 6:1 complex has particular structural features making it a unique exception to the rule that only amorphous polymers conduct. Here, we demonstrate that ionic conductivity in crystalline polymers is not unique to the 6:1 complex by reporting several new crystalline polymer electrolytes containing different alkali metal salts (Na+, K+ and Rb+), including the best conductor poly(ethylene oxide)8:NaAsF6 discovered so far, with a conductivity 1.5 orders of magnitude higher than poly(ethylene oxide)6:LiAsF6. These are the first crystalline polymer electrolytes with a different composition and structures to that of the 6:1 Li+ complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conductivity data of 8:1 complexes of PEO (methoxy end-capped, average Mn=1,000) with NaAsF6, NaPF6, KAsF6 and RbAsF6.
Figure 2: PXRD data.
Figure 3: The structure of PEO8:NaAsF6.
Figure 4: DSC curve for PEO8:NaAsF6.
Figure 5: PXRD data collected at several temperatures above and below the knee in the conductivity plot of PEO8:NaAsF6, Fig. 1.
Figure 6

Similar content being viewed by others

References

  1. Scrosati, B. (ed.) Applications of Electroactive Polymers (Chapman & Hall, 1993).

  2. Gray, F. M. Polymer Electrolytes. RSC materials monographs (The Royal Society of Chemistry, 1997).

    Google Scholar 

  3. Tarascon, J.-M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    Article  CAS  Google Scholar 

  4. Gadjourova, Z., Andreev, Y. G., Tunstall, D. P. & Bruce, P. G. Ionic conductivity in crystalline polymer electrolytes. Nature 412, 520–523 (2001).

    Article  CAS  Google Scholar 

  5. Christie, A. M., Lilley, S. J., Staunton, E., Andreev, Y. G. & Bruce, P. G. Increasing the conductivity of crystalline polymer electrolytes. Nature 433, 50–53 (2005).

    Article  CAS  Google Scholar 

  6. Fenton, D. E., Parker, J. M. & Wright, P. V. Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14, 589 (1973).

    Article  CAS  Google Scholar 

  7. Armand, M. B., Chabango, J. M. & Duclot, M. J. in Fast Ion Transport in Solids (eds Vashishta, P., Mundy, J. N. & Shenoy, G. K.) 131–136 (North-Holland, 1979).

    Google Scholar 

  8. Berthier, C., Gorecki, W., Minier, M., Armand, M. B., Chabagno, J. M. & Rigaud, P. Microscopic investigation of ionic conductivity in alkali metal salts—poly(ethylene oxide) adducts. Solid State Ion. 11, 91–95 (1983).

    Article  CAS  Google Scholar 

  9. Ratner, M. A. in Polymer Electrolytes Reviews—1 (eds MacCallum, J. R. & Vincent, C. A.) 173–236 (Elsevier Applied Science, 1987).

    Google Scholar 

  10. Ratner, M. A. & Shriver, D. F. Ion-transport in solvent-free polymers. Chem. Rev. 88, 109–124 (1988).

    Article  CAS  Google Scholar 

  11. Armand, M. B. Polymers with ionic conductivity. Adv. Mater. 2, 278–286 (1990).

    Article  CAS  Google Scholar 

  12. Hutchison, J. C., Bissessur, R. & Shriver, D. F. New polyphosphazene-clay and cryptand-clay intercalates. Nanotechnology 622, 262–272 (1996).

    CAS  Google Scholar 

  13. Tokuda, H. & Watanabe, M. Characterization and ionic transport properties of nano-composite electrolytes containing a lithium salt of a superweak aluminate anion. Electrochim. Acta 48, 2085–2091 (2003).

    Article  CAS  Google Scholar 

  14. Golodnitsky, D. et al. New generation of ordered polymer electrolytes for lithium batteries. Electrochem. Solid-State Lett. 7, A412–A415 (2004).

    Article  CAS  Google Scholar 

  15. Wright, P. V., Zheng, Y., Bhatt, D., Richardson, T. & Ungar, G. Supramolecular order in new polymer electrolytes. Polym. Int. 47, 34–42 (1998).

    Article  CAS  Google Scholar 

  16. Evans, J., Vincent, C. A. & Bruce, P. G. Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28, 2324–2328 (1987).

    Article  CAS  Google Scholar 

  17. Bruce., P. G. (ed.) Solid State Electrochemistry (Cambridge Univ. Press, 1995).

  18. Gjikaj, M. & Adam, A. Complexation of alkali triflates by crown ethers: Synthesis and crystal structure of [Na(12-crown-4)2][SO3CF3], [Na(5-crown-5)2][SO3CF3], [Rb(18-crown-6)2][SO3CF3], and [Cz(18-crown-6)2][SO3CF3]. Z. Anorg. Allg. Chem. 632, 2475–2480 (2006).

    Article  CAS  Google Scholar 

  19. Bush, M. A. & Truter, M. R. Crystal structures of complexes between alkali-metal salts and cyclic polyethers, part II. Complex formed from sodium bromide and 2,3,11,12-dibenzo-1,4,7,10,13,16-hexaoxacyclo-octadeca-2,11-diene (‘Di-benzo-18-crown-6’). J. Chem. Soc. B 1440–1446 (1971).

  20. Mason, E. & Eick, H. A. Structure of a 1:2 complex of sodium perchlorate and 1,4,7,10-tetraoxacyclododecane (12-crown-4). Acta Cryst. B 38, 1821–1823 (1982).

    Article  Google Scholar 

  21. Brandell, D., Liivat, A., Aabloo, A. & Thomas, J. O. Molecular dynamics simulation of the crystalline short-chain polymer system LiPF6:PEO6 (Mw1,000). J. Mater. Chem. 15, 4338–4345 (2005).

    Article  CAS  Google Scholar 

  22. Liivat, A., Brandell, D. & Thomas, J. O. A molecular dynamics study of ion-conduction mechanisms in crystalline low−MwLiPF6:PEO6 . J. Mater. Chem. 17, 3938–3946 (2007).

    Article  CAS  Google Scholar 

  23. Sauvage, F., Laffont, L., Tarascon, J.-M. & Baudrin, E. Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2 . Inorg. Chem. 46, 3289–3294 (2007).

    Article  CAS  Google Scholar 

  24. Doeff, M. M., Peng, M. Y., Ma, Y. & De Jonghe, L. C. Orthorhombic NaxMnO2 as a cathode material for secondary sodium and lithium polymer batteries. J. Electrochem. Soc. 141, L145–L147 (1994).

    Article  CAS  Google Scholar 

  25. Staunton, E., Andreev, Y. G. & Bruce, P. G. Factors influencing the conductivity of crystalline polymer electrolytes. Faraday Discuss. 134, 143–156 (2007).

    Article  CAS  Google Scholar 

  26. Zhang, C., Staunton, E., Andreev, Y. G. & Bruce, P. G. Raising the conductivity of crystalline polymer electrolytes by aliovalent doping. J. Am. Chem. Soc. 127, 18305–18308 (2005).

    Article  CAS  Google Scholar 

  27. Gray, F. M., McCallum, J. R. & Vincent, C. A. USA Patent Appl. 8 610 049, May 1986.

  28. Sheldrick, G. M. SHELXTL 6.14 (Bruker AXS, Madison, 2004).

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to J. K. Cockcroft, University College London, for collecting variable-temperature PXRD data. P.G.B. is indebted to the EPSRC and the EU for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter G. Bruce.

Supplementary information

Supplementary Information

Supplementary Information (PDF 362 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, C., Gamble, S., Ainsworth, D. et al. Alkali metal crystalline polymer electrolytes. Nature Mater 8, 580–584 (2009). https://doi.org/10.1038/nmat2474

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2474

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing