Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Local ordering and electronic signatures of submonolayer water on anatase TiO2(101)


The interaction of water with metal oxide surfaces is of fundamental importance to various fields of science, ranging from geophysics to catalysis and biochemistry1,2,3,4. In particular, the discovery that TiO2 photocatalyses the dissociation of water5 has triggered broad interest and intensive studies of water adsorption on TiO2 over decades6. So far, these studies have mostly focused on the (110) surface of the most stable polymorph of TiO2, rutile, whereas it is the metastable anatase form that is generally considered photocatalytically more efficient. The present combined experimental (scanning tunnelling microscopy) and theoretical (density functional theory and first-principles molecular dynamics) study gives atomic-scale insights into the adsorption of water on anatase (101), the most frequently exposed surface of this TiO2 polymorph. Water adsorbs as an intact monomer with a computed binding energy of 730 meV. The charge rearrangement at the molecule–anatase interface affects the adsorption of further water molecules, resulting in short-range repulsive and attractive interactions along the [010] and directions, respectively, and a locally ordered (2×2) superstructure of molecular water.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: The TiO2 anatase (101) surface.
Figure 2: Hopping and short-range ordering of water on anatase (101).
Figure 3: Ordered water overlayer on anatase (101).
Figure 4: Theoretical results for an adsorbed water monomer on anatase (101).
Figure 5: Calculated adsorption configurations of water on anatase (101).


  1. Henderson, M. A. The interaction of water with solid surfaces: Fundamental aspects revisited. Surf. Sci. Rep. 46, 1–308 (2002).

    Article  CAS  Google Scholar 

  2. Verdaguer, A., Sacha, G. M., Bluhm, H. & Salmeron, M. Molecular structure of water at interfaces: Wetting at the nanometer scale. Chem. Rev. 106, 1478–1510 (2006).

    Article  CAS  Google Scholar 

  3. Al-Abadleh, H. A. & Grassian, V. H. Oxide surfaces as environmental interfaces. Surf. Sci. Rep. 52, 63–161 (2003).

    Article  CAS  Google Scholar 

  4. Thiel, P. A. & Madey, T. E. The interaction of water with solid surfaces: Fundamental aspects. Surf. Sci. Rep. 7, 211–385 (1987).

    Article  CAS  Google Scholar 

  5. Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).

    Article  CAS  Google Scholar 

  6. Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53–229 (2003).

    Article  CAS  Google Scholar 

  7. Pang, C. L., Lindsay, R. & Thornton, G. Chemical reactions on rutile TiO2(110). Chem. Soc. Rev. 37, 2328–2353 (2008).

    Article  CAS  Google Scholar 

  8. Wendt, S. et al. Formation and splitting of paired hydroxyl groups on reduced TiO2(110). Phys. Rev. Lett. 96, 066107 (2006).

    Article  CAS  Google Scholar 

  9. Zhang, Z., Bondarchuk, O., Kay, B. D., White, J. M. & Dohnalek, Z. Imaging water dissociation on TiO2(110): Evidence for inequivalent geminate OH groups. J. Phys. Chem. B 110, 21840–21845 (2006).

    Article  CAS  Google Scholar 

  10. Brookes, I. M., Muryn, C. A. & Thornton, G. Imaging water dissociation on TiO2(110). Phys. Rev. Lett. 87, 266103 (2001).

    Article  CAS  Google Scholar 

  11. Vittadini, A., Selloni, A., Rotzinger, F. P. & Graetzel, M. Structure and energetics of water adsorbed at TiO2 anatase (101) and (001) surfaces. Phys. Rev. Lett. 81, 2954–2957 (1998).

    Article  CAS  Google Scholar 

  12. Tilocca, A. & Selloni, A. Vertical and lateral order in adsorbed water layers on anatase TiO2(101). Langmuir 20, 8379–8384 (2004).

    Article  CAS  Google Scholar 

  13. Mattioli, G., Filippone, F., Caminiti, R. & Bonapasta, A. A. Short hydrogen bonds at the water/TiO2 (anatase) interface. J. Phys. Chem. C 112, 13579–13586 (2008).

    Article  CAS  Google Scholar 

  14. Diebold, U., Ruzycki, N., Herman, G. S. & Selloni, A. One step towards bridging the materials gap: Surface studies of TiO2 anatase. Catal. Today 85, 93–100 (2003).

    Article  CAS  Google Scholar 

  15. Gong, X. -Q., Selloni, A., Batzill, M. & Diebold, U. Steps on anatase TiO2(101). Nature Mater. 5, 665–670 (2006).

    Article  CAS  Google Scholar 

  16. Herman, G. S., Dohnalek, Z., Ruzycki, N. & Diebold, U. Experimental investigation of the interaction of water and methanol with anatase-TiO2(101). J. Phys. Chem. B 107, 2788–2795 (2003).

    Article  CAS  Google Scholar 

  17. He, Y. B., Dulub, O., Cheng, H. Z., Selloni, A. & Diebold, U. Evidence for the predominance of subsurface defects on reduced anatase TiO2(101). Phys. Rev. Lett. 102, 106105 (2009).

    Article  Google Scholar 

  18. Cerda, J. et al. Novel water overlayer growth on Pd(111) characterized with scanning tunneling microscopy and density functional theory. Phys. Rev. Lett. 93, 116101 (2004).

    Article  CAS  Google Scholar 

  19. Michaelides, A. & Morgenstern, K. Ice nanoclusters at hydrophobic metal surfaces. Nature Mater. 6, 597–601 (2007).

    Article  CAS  Google Scholar 

  20. Car, R. & Parrinello, M. Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55, 2471–2474 (1985).

    Article  CAS  Google Scholar 

  21. Wang, Y. et al. Tuning the reactivity of oxide surfaces by charge-accepting adsorbates. Angew. Chem. Int. Ed. 46, 7315–7318 (2007).

    Article  CAS  Google Scholar 

  22. Mitsui, T., Rose, M. K., Fomin, E., Ogletree, D. F. & Salmeron, M. Water diffusion and clustering on Pd(111). Science 297, 1850–1852 (2002).

    Article  CAS  Google Scholar 

  23. Ferry, D. et al. The properties of a two-dimensional water layer on MgO(001). Surf. Sci. 377–379, 634–638 (1997).

    Article  Google Scholar 

  24. Dulub, O., Meyer, B. & Diebold, U. Observation of the dynamical change in a water monolayer adsorbed on a ZnO surface. Phys. Rev. Lett. 95, 136101 (2005).

    Article  Google Scholar 

  25. Lindan, P. J. D. & Zhang, C. Exothermic water dissociation on the rutile TiO2(110) surface. Phys. Rev. B 72, 075439 (2005).

    Article  Google Scholar 

  26. Kowalski, P. M., Meyer, B. & Marx, D. Composition, structure, and stability of the rutile TiO2(110) surface: Oxygen depletion, hydroxylation, hydrogen migration, and water adsorption. Phys. Rev. B 79, 115410 (2009).

    Article  Google Scholar 

  27. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  28. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990).

    Article  CAS  Google Scholar 

  29. Baroni, S., Giannozzi, P., De Gironcoli, S. & Dal Corso, A. Quantum ESPRESSO v. 3.2.3, <>.

  30. Tersoff, J. & Hamann, D. R. Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985).

    Article  CAS  Google Scholar 

Download references


This work was supported by DoE award DE-FG02-05ER15702. We thank C. Di Valentin for participating in the early stages of this project and H. Cheng for the constant density STM program. A.T. thanks the UK’s Royal Society for financial support.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Yunbin He or Ulrike Diebold.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1353 kb)

Supplementary Information

Supplementary Movie (AVI 4767 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

He, Y., Tilocca, A., Dulub, O. et al. Local ordering and electronic signatures of submonolayer water on anatase TiO2(101). Nature Mater 8, 585–589 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing