Abstract
The interaction of water with metal oxide surfaces is of fundamental importance to various fields of science, ranging from geophysics to catalysis and biochemistry1,2,3,4. In particular, the discovery that TiO2 photocatalyses the dissociation of water5 has triggered broad interest and intensive studies of water adsorption on TiO2 over decades6. So far, these studies have mostly focused on the (110) surface of the most stable polymorph of TiO2, rutile, whereas it is the metastable anatase form that is generally considered photocatalytically more efficient. The present combined experimental (scanning tunnelling microscopy) and theoretical (density functional theory and first-principles molecular dynamics) study gives atomic-scale insights into the adsorption of water on anatase (101), the most frequently exposed surface of this TiO2 polymorph. Water adsorbs as an intact monomer with a computed binding energy of 730 meV. The charge rearrangement at the molecule–anatase interface affects the adsorption of further water molecules, resulting in short-range repulsive and attractive interactions along the [010] and directions, respectively, and a locally ordered (2×2) superstructure of molecular water.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Origins of fast diffusion of water dimers on surfaces
Nature Communications Open Access 03 April 2020
-
Bayesian inference of atomistic structure in functional materials
npj Computational Materials Open Access 18 March 2019
-
Self-hydrogenated shell promoting photocatalytic H2 evolution on anatase TiO2
Nature Communications Open Access 16 July 2018
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Henderson, M. A. The interaction of water with solid surfaces: Fundamental aspects revisited. Surf. Sci. Rep. 46, 1–308 (2002).
Verdaguer, A., Sacha, G. M., Bluhm, H. & Salmeron, M. Molecular structure of water at interfaces: Wetting at the nanometer scale. Chem. Rev. 106, 1478–1510 (2006).
Al-Abadleh, H. A. & Grassian, V. H. Oxide surfaces as environmental interfaces. Surf. Sci. Rep. 52, 63–161 (2003).
Thiel, P. A. & Madey, T. E. The interaction of water with solid surfaces: Fundamental aspects. Surf. Sci. Rep. 7, 211–385 (1987).
Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).
Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53–229 (2003).
Pang, C. L., Lindsay, R. & Thornton, G. Chemical reactions on rutile TiO2(110). Chem. Soc. Rev. 37, 2328–2353 (2008).
Wendt, S. et al. Formation and splitting of paired hydroxyl groups on reduced TiO2(110). Phys. Rev. Lett. 96, 066107 (2006).
Zhang, Z., Bondarchuk, O., Kay, B. D., White, J. M. & Dohnalek, Z. Imaging water dissociation on TiO2(110): Evidence for inequivalent geminate OH groups. J. Phys. Chem. B 110, 21840–21845 (2006).
Brookes, I. M., Muryn, C. A. & Thornton, G. Imaging water dissociation on TiO2(110). Phys. Rev. Lett. 87, 266103 (2001).
Vittadini, A., Selloni, A., Rotzinger, F. P. & Graetzel, M. Structure and energetics of water adsorbed at TiO2 anatase (101) and (001) surfaces. Phys. Rev. Lett. 81, 2954–2957 (1998).
Tilocca, A. & Selloni, A. Vertical and lateral order in adsorbed water layers on anatase TiO2(101). Langmuir 20, 8379–8384 (2004).
Mattioli, G., Filippone, F., Caminiti, R. & Bonapasta, A. A. Short hydrogen bonds at the water/TiO2 (anatase) interface. J. Phys. Chem. C 112, 13579–13586 (2008).
Diebold, U., Ruzycki, N., Herman, G. S. & Selloni, A. One step towards bridging the materials gap: Surface studies of TiO2 anatase. Catal. Today 85, 93–100 (2003).
Gong, X. -Q., Selloni, A., Batzill, M. & Diebold, U. Steps on anatase TiO2(101). Nature Mater. 5, 665–670 (2006).
Herman, G. S., Dohnalek, Z., Ruzycki, N. & Diebold, U. Experimental investigation of the interaction of water and methanol with anatase-TiO2(101). J. Phys. Chem. B 107, 2788–2795 (2003).
He, Y. B., Dulub, O., Cheng, H. Z., Selloni, A. & Diebold, U. Evidence for the predominance of subsurface defects on reduced anatase TiO2(101). Phys. Rev. Lett. 102, 106105 (2009).
Cerda, J. et al. Novel water overlayer growth on Pd(111) characterized with scanning tunneling microscopy and density functional theory. Phys. Rev. Lett. 93, 116101 (2004).
Michaelides, A. & Morgenstern, K. Ice nanoclusters at hydrophobic metal surfaces. Nature Mater. 6, 597–601 (2007).
Car, R. & Parrinello, M. Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55, 2471–2474 (1985).
Wang, Y. et al. Tuning the reactivity of oxide surfaces by charge-accepting adsorbates. Angew. Chem. Int. Ed. 46, 7315–7318 (2007).
Mitsui, T., Rose, M. K., Fomin, E., Ogletree, D. F. & Salmeron, M. Water diffusion and clustering on Pd(111). Science 297, 1850–1852 (2002).
Ferry, D. et al. The properties of a two-dimensional water layer on MgO(001). Surf. Sci. 377–379, 634–638 (1997).
Dulub, O., Meyer, B. & Diebold, U. Observation of the dynamical change in a water monolayer adsorbed on a ZnO surface. Phys. Rev. Lett. 95, 136101 (2005).
Lindan, P. J. D. & Zhang, C. Exothermic water dissociation on the rutile TiO2(110) surface. Phys. Rev. B 72, 075439 (2005).
Kowalski, P. M., Meyer, B. & Marx, D. Composition, structure, and stability of the rutile TiO2(110) surface: Oxygen depletion, hydroxylation, hydrogen migration, and water adsorption. Phys. Rev. B 79, 115410 (2009).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990).
Baroni, S., Giannozzi, P., De Gironcoli, S. & Dal Corso, A. Quantum ESPRESSO v. 3.2.3, <http://www.pwscf.org>.
Tersoff, J. & Hamann, D. R. Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985).
Acknowledgements
This work was supported by DoE award DE-FG02-05ER15702. We thank C. Di Valentin for participating in the early stages of this project and H. Cheng for the constant density STM program. A.T. thanks the UK’s Royal Society for financial support.
Author information
Authors and Affiliations
Corresponding authors
Supplementary information
Supplementary Information
Supplementary Information (PDF 1353 kb)
Supplementary Information
Supplementary Movie (AVI 4767 kb)
Rights and permissions
About this article
Cite this article
He, Y., Tilocca, A., Dulub, O. et al. Local ordering and electronic signatures of submonolayer water on anatase TiO2(101). Nature Mater 8, 585–589 (2009). https://doi.org/10.1038/nmat2466
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat2466
This article is cited by
-
Effect of oxygen vacancy concentration on the photocatalytic hydrogen evolution performance of anatase TiO2: DFT and experimental studies
Journal of Materials Science: Materials in Electronics (2021)
-
Origins of fast diffusion of water dimers on surfaces
Nature Communications (2020)
-
Photoluminescence study of anatase and rutile structures of Fe-doped TiO2 nanoparticles at different dopant concentrations
Applied Physics A (2020)
-
Bayesian inference of atomistic structure in functional materials
npj Computational Materials (2019)
-
Molecules and heterostructures at TiO2 surface: the cases of H2O, CO2, and organic and inorganic sensitizers
Research on Chemical Intermediates (2019)