Abstract
The Li–S battery has been under intense scrutiny for over two decades, as it offers the possibility of high gravimetric capacities and theoretical energy densities ranging up to a factor of five beyond conventional Li-ion systems. Herein, we report the feasibility to approach such capacities by creating highly ordered interwoven composites. The conductive mesoporous carbon framework precisely constrains sulphur nanofiller growth within its channels and generates essential electrical contact to the insulating sulphur. The structure provides access to Li+ ingress/egress for reactivity with the sulphur, and we speculate that the kinetic inhibition to diffusion within the framework and the sorption properties of the carbon aid in trapping the polysulphides formed during redox. Polymer modification of the carbon surface further provides a chemical gradient that retards diffusion of these large anions out of the electrode, thus facilitating more complete reaction. Reversible capacities up to 1,320 mA h g−1 are attained. The assembly process is simple and broadly applicable, conceptually providing new opportunities for materials scientists for tailored design that can be extended to many different electrode materials.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Cathode materials for lithium-sulfur battery: a review
Journal of Solid State Electrochemistry Open Access 20 January 2023
-
Isolated Fe-Co heteronuclear diatomic sites as efficient bifunctional catalysts for high-performance lithium-sulfur batteries
Nature Communications Open Access 18 January 2023
-
Insights into the use of polyepichlorohydrin polymer in lithium battery energy storage/conversion devices: review
SN Applied Sciences Open Access 08 December 2022
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout






References
Winter, M. & Brodd, R. Batteries, fuel cells and supercapacitors. Chem. Rev. 104, 4245–4269 (2004).
Bruce, P. G. Energy storage beyond the horizon: Rechargeable lithium batteries. Solid State Ion. 179, 752–760 (2008).
Rauh, R. D., Abraham, K. M., Pearson, G. F., Surprenant, J. K. & Brummer, S. B. A lithium/dissolved sulfur battery with an organic electrolyte. J. Electrochem. Soc. 126, 523–527 (1979).
Shim, J., Striebel, K. A. & Cairns, E. J. The lithium/sulfur rechargeable cell. J. Electrochem. Soc. 149, A1321–A1325 (2002).
Kang, K., Meng, Y. S., Bréger, J., Grey, C. P. & Ceder, G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311, 977–980 (2006).
Peled, E. & Yamin, H. Lithium/sulfur organic battery. Prog. Batteries Sol. Cells 5, 56–58 (1984).
Chu, M.-Y. Rechargeable positive electrodes. US Patent US5686201 (1997).
Peramunage, D. & Licht, S. A solid sulfur cathode for aqueous batteries. Science 261, 1029–1032 (1993).
Dean, J. A. (ed.) Lange’s Handbook of Chemistry 3rd edn,3–5 (McGraw-Hill, 1985).
Cunningham, P. T., Johnson, S. A. & Cairns, E. J. Phase equilibria in lithium–chalcogen systems: Lithium–sulfur. J. Electrochem. Soc. 119, 1448–1450 (1972).
Choi, J.-W. et al. Rechargeable lithium/sulfur battery with suitable mixed liquid electrolytes. Electrochim. Acta 52, 2075–2082 (2007).
Rauh, R. D., Shuker, F. S., Marston, J. M. & Brummer, S. B. Formation of lithium polysulfides in aprotic media. J. Inorg. Nucl. Chem. 39, 1761–1766 (1977).
Cheon, S.-E. et al. Rechargeable lithium sulfur battery II. Rate capability and cycle characteristics. J. Electrochem. Soc. 150, A800–A805 (2003).
Shin, J. H. & Cairns, E. J. Characterization of N-methyl-N-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide-LiTFSI-tetra(ethylene glycol) dimethyl ether mixtures as a Li metal cell electrolyte. J. Electrochem. Soc. 155, A368–A373 (2008).
Yuan, L. X. et al. Improved dischargeability and reversibility of sulfur cathode in a novel ionic liquid electrolyte. Electrochem. Commun. 8, 610–614 (2006).
Ryu, H.-S. et al. Discharge behavior of lithium/sulfur cell with TEGDME based electrolyte at low temperature. J. Power Sources 163, 201–206 (2006).
Wang, J. et al. Sulfur-mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries. Carbon 46, 229–235 (2008).
Chung, K.-I., Kim, W.-S. & Choi, Y.-K. Lithium phosphorous oxynitride as a passive layer for anodes in lithium secondary batteries. J. Electroanal. Chem. 566, 263–267 (2004).
Visco, S. J., Nimon, Y. S. & Katz, B. D. Ionically conductive composites for protection of active metal anodes. US Patent 7,282,296, October 16 (2007).
Skotheim, T. A., Sheehan, C. J., Mikhaylik, Y. V. & Affinito, J. Lithium anodes for electrochemical cells. US patent 7247,408, July 24 (2007).
Akridge, J. R., Mikhaylik, Y. V. & White, N. Li/S fundamental chemistry and application to high-performance rechargeable batteries. Solid State Ion. 175, 243–245 (2004).
Mikhaylik, Y. V. & Akridge, J. R. Low temperature performance of Li/S batteries. J. Electrochem. Soc. 150, A306–A311 (2003).
Zheng, W., Liu, Y. W., Hu, X. G. & Zhang, C. F. Novel nanosized adsorbing sulfur composite cathode materials for the advanced secondary lithium batteries. Electrochim. Acta 51, 1330–1335 (2006).
Cheon, S.-E. et al. Capacity fading mechanisms on cycling a high-capacity secondary sulfur cathode. J. Electrochem. Soc. 151, A2067–A2073 (2004).
Song, M.-S. et al. Effects of nanosized adsorbing material on electrochemical properties of sulfur cathode for Li/S secondary batteries. J. Electrochem. Soc. 151, A791–A795 (2004).
Kobayashi, T. et al. All solid-state battery with sulfur electrode and thio-LISICON electrolyte. J. Power Sources 182, 621 (2008).
Wang, J., Yang, J., Xie, J. & Xu, N. A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries. Adv. Mater. 14, 963–965 (2002).
Ryoo, R., Joo, S. H. & Jun, S. Synthesis of highly ordered carbon molecular sieves via template mediated structural transformations. J. Phys. Chem. B 103, 7743–7746 (1999).
Lee, J., Kim, J. & Hyeon, T. Recent progress in the synthesis of porous carbon materials. Adv. Mater. 18, 2073–2094 (2006).
Jiao, F. & Bruce, P. G. Mesoporous crystalline β-MnO2—a reversible positive electrode for rechargeable lithium batteries. Adv. Mater. 19, 657–660 (2007).
Jiao, F., Shaju, K. M. & Bruce, P. G. Synthesis of nanowire and mesoporous low-temperature LiCoO2 by a post-templating reaction. Angew. Chem. Int. Ed. 117, 6708–6711 (2005).
Ji, X., Herle, P. S., Rho, Y. H. & Nazar, L. F. Carbon/MoO2 composite based on porous semi-graphitized nanorod assemblies from in situ reaction of tri-block polymers. Chem. Mater. 19, 374–383 (2007).
Grigoriants, I. et al. The use of tin-decorated mesoporous carbon as an anode material for rechargeable lithium batteries. Chem. Commun. 921–923 (2005).
Joo, S. et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 412, 169–172 (2001).
Ryoo, R., Joo, S., Kruk, M. & Jaroniec, M. Ordered mesoporous carbons. Adv. Mater. 13, 677–681 (2001).
Lei, J. et al. Immobilization of enzymes in mesoporous materials: Controlling the entrance to nanospace. Micropor. Mesopor. Mater. 73, 121–128 (2004).
Miessler, G. L. & Tarr, D. A. Inorganic Chemistry (Pearson Education, 1998).
Landau, M. V., Vradman, L., Wang, X. & Titelman, L. High loading TiO2 and ZrO2 nanocrystals ensembles inside the mesopores of SBA-15: Preparation, texture and stability. Micropor. Mesopor. Mater. 78, 117–129 (2005).
Kim, J., Lee, J. & Hyeon, T. Direct synthesis of uniform mesoporous carbons from the carbonization of as-synthesized silica/triblock copolymer nanocomposites. Carbon 42, 2711–2719 (2004).
Yamin, H., Gorenshtein, A., Penciner, J., Sternberg, Y. & Peled, E. Lithium sulfur battery. Oxidation/reduction mechanisms of polysulfides in THF solutions. J. Electrochem. Soc. 135, 1045–1048 (1988).
Kumaresan, K., Mikhaylik, Y. & White, R. E. A mathematical model for a lithium–sulfur cell. J. Electrochem. Soc. 155, A576–A582 (2008).
Gierszal, K. P., Kim, T.-W., Ryoo, R. & Jaroniec, M. Adsorption and structural properties of ordered mesoporous carbons synthesized by using various carbon precursors and ordered siliceous P6mm and Ia3hd mesostructures as templates. J. Phys. Chem. B 109, 23263–23268 (2005).
Yu, C., Fan, J., Tian, B. & Zhao, D. Morphology development of mesoporous materials: A colloidal phase separation mechanism. Chem. Mater. 16, 889–898 (2004).
Jun, S. et al. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J. Am. Chem. Soc. 122, 10712–10713 (2000).
Brunauer, S., Emmett, P. H. & Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938).
Barrett, E. P., Joyner, L. G. & Halenda, P. P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373–380 (1951).
Xu, K. & Angell, C. A. High anodic stability of a new electrolyte solvent: Unsymmetric noncyclic aliphatic sulfone. J. Electrochem. Soc. 145, L70–L72 (1998).
Acknowledgements
NSERC is gratefully acknowledged for financial support. We thank N. Coombs, University of Toronto, for help with acquisition of the TEM and SEM images.
Author information
Authors and Affiliations
Corresponding author
Supplementary information
Supplementary Information
Supplementary Information (PDF 1124 kb)
Rights and permissions
About this article
Cite this article
Ji, X., Lee, K. & Nazar, L. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nature Mater 8, 500–506 (2009). https://doi.org/10.1038/nmat2460
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat2460
This article is cited by
-
Optimizing the p charge of S in p-block metal sulfides for sulfur reduction electrocatalysis
Nature Catalysis (2023)
-
Isolated Fe-Co heteronuclear diatomic sites as efficient bifunctional catalysts for high-performance lithium-sulfur batteries
Nature Communications (2023)
-
Preparation and electrochemical properties of hollow carbon spheres/sulfur co-doped with N and O for high-performance lithium-sulfur batteries
Journal of Porous Materials (2023)
-
Biomass fallen leaves derived porous carbon for high performance lithium sulfur batteries
Ionics (2023)
-
Insights into the use of polyepichlorohydrin polymer in lithium battery energy storage/conversion devices: review
SN Applied Sciences (2023)