Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries


The Li–S battery has been under intense scrutiny for over two decades, as it offers the possibility of high gravimetric capacities and theoretical energy densities ranging up to a factor of five beyond conventional Li-ion systems. Herein, we report the feasibility to approach such capacities by creating highly ordered interwoven composites. The conductive mesoporous carbon framework precisely constrains sulphur nanofiller growth within its channels and generates essential electrical contact to the insulating sulphur. The structure provides access to Li+ ingress/egress for reactivity with the sulphur, and we speculate that the kinetic inhibition to diffusion within the framework and the sorption properties of the carbon aid in trapping the polysulphides formed during redox. Polymer modification of the carbon surface further provides a chemical gradient that retards diffusion of these large anions out of the electrode, thus facilitating more complete reaction. Reversible capacities up to 1,320 mA h g−1 are attained. The assembly process is simple and broadly applicable, conceptually providing new opportunities for materials scientists for tailored design that can be extended to many different electrode materials.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: SEM images of CMK-3/sulphur, and its electrochemical characterization.
Figure 2: TEM image and elemental maps of a CMK-3/S-155 composite particle and schematic diagrams of the structure and redox processes.
Figure 3: XRD patterns of CMK-3/S before and after heating.
Figure 4: Electrochemical characterization of PEG-coated CMK-3/S and comparison to reference materials.
Figure 5: TGA of PEG-modified CMK-3.
Figure 6: Changes in surface morphology of CMK-3/S-155 versus PEG-modified CMK-3/S-155 on cycling.


  1. Winter, M. & Brodd, R. Batteries, fuel cells and supercapacitors. Chem. Rev. 104, 4245–4269 (2004).

    Article  CAS  Google Scholar 

  2. Bruce, P. G. Energy storage beyond the horizon: Rechargeable lithium batteries. Solid State Ion. 179, 752–760 (2008).

    Article  CAS  Google Scholar 

  3. Rauh, R. D., Abraham, K. M., Pearson, G. F., Surprenant, J. K. & Brummer, S. B. A lithium/dissolved sulfur battery with an organic electrolyte. J. Electrochem. Soc. 126, 523–527 (1979).

    Article  CAS  Google Scholar 

  4. Shim, J., Striebel, K. A. & Cairns, E. J. The lithium/sulfur rechargeable cell. J. Electrochem. Soc. 149, A1321–A1325 (2002).

    Article  CAS  Google Scholar 

  5. Kang, K., Meng, Y. S., Bréger, J., Grey, C. P. & Ceder, G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311, 977–980 (2006).

    Article  CAS  Google Scholar 

  6. Peled, E. & Yamin, H. Lithium/sulfur organic battery. Prog. Batteries Sol. Cells 5, 56–58 (1984).

    CAS  Google Scholar 

  7. Chu, M.-Y. Rechargeable positive electrodes. US Patent US5686201 (1997).

  8. Peramunage, D. & Licht, S. A solid sulfur cathode for aqueous batteries. Science 261, 1029–1032 (1993).

    Article  CAS  Google Scholar 

  9. Dean, J. A. (ed.) Lange’s Handbook of Chemistry 3rd edn,3–5 (McGraw-Hill, 1985).

  10. Cunningham, P. T., Johnson, S. A. & Cairns, E. J. Phase equilibria in lithium–chalcogen systems: Lithium–sulfur. J. Electrochem. Soc. 119, 1448–1450 (1972).

    Article  CAS  Google Scholar 

  11. Choi, J.-W. et al. Rechargeable lithium/sulfur battery with suitable mixed liquid electrolytes. Electrochim. Acta 52, 2075–2082 (2007).

    Article  CAS  Google Scholar 

  12. Rauh, R. D., Shuker, F. S., Marston, J. M. & Brummer, S. B. Formation of lithium polysulfides in aprotic media. J. Inorg. Nucl. Chem. 39, 1761–1766 (1977).

    Article  CAS  Google Scholar 

  13. Cheon, S.-E. et al. Rechargeable lithium sulfur battery II. Rate capability and cycle characteristics. J. Electrochem. Soc. 150, A800–A805 (2003).

    Article  CAS  Google Scholar 

  14. Shin, J. H. & Cairns, E. J. Characterization of N-methyl-N-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide-LiTFSI-tetra(ethylene glycol) dimethyl ether mixtures as a Li metal cell electrolyte. J. Electrochem. Soc. 155, A368–A373 (2008).

    Article  CAS  Google Scholar 

  15. Yuan, L. X. et al. Improved dischargeability and reversibility of sulfur cathode in a novel ionic liquid electrolyte. Electrochem. Commun. 8, 610–614 (2006).

    Article  CAS  Google Scholar 

  16. Ryu, H.-S. et al. Discharge behavior of lithium/sulfur cell with TEGDME based electrolyte at low temperature. J. Power Sources 163, 201–206 (2006).

    Article  CAS  Google Scholar 

  17. Wang, J. et al. Sulfur-mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries. Carbon 46, 229–235 (2008).

    Article  CAS  Google Scholar 

  18. Chung, K.-I., Kim, W.-S. & Choi, Y.-K. Lithium phosphorous oxynitride as a passive layer for anodes in lithium secondary batteries. J. Electroanal. Chem. 566, 263–267 (2004).

    Article  CAS  Google Scholar 

  19. Visco, S. J., Nimon, Y. S. & Katz, B. D. Ionically conductive composites for protection of active metal anodes. US Patent 7,282,296, October 16 (2007).

  20. Skotheim, T. A., Sheehan, C. J., Mikhaylik, Y. V. & Affinito, J. Lithium anodes for electrochemical cells. US patent 7247,408, July 24 (2007).

  21. Akridge, J. R., Mikhaylik, Y. V. & White, N. Li/S fundamental chemistry and application to high-performance rechargeable batteries. Solid State Ion. 175, 243–245 (2004).

    Article  CAS  Google Scholar 

  22. Mikhaylik, Y. V. & Akridge, J. R. Low temperature performance of Li/S batteries. J. Electrochem. Soc. 150, A306–A311 (2003).

    Article  CAS  Google Scholar 

  23. Zheng, W., Liu, Y. W., Hu, X. G. & Zhang, C. F. Novel nanosized adsorbing sulfur composite cathode materials for the advanced secondary lithium batteries. Electrochim. Acta 51, 1330–1335 (2006).

    Article  CAS  Google Scholar 

  24. Cheon, S.-E. et al. Capacity fading mechanisms on cycling a high-capacity secondary sulfur cathode. J. Electrochem. Soc. 151, A2067–A2073 (2004).

    Article  CAS  Google Scholar 

  25. Song, M.-S. et al. Effects of nanosized adsorbing material on electrochemical properties of sulfur cathode for Li/S secondary batteries. J. Electrochem. Soc. 151, A791–A795 (2004).

    Article  CAS  Google Scholar 

  26. Kobayashi, T. et al. All solid-state battery with sulfur electrode and thio-LISICON electrolyte. J. Power Sources 182, 621 (2008).

    Article  CAS  Google Scholar 

  27. Wang, J., Yang, J., Xie, J. & Xu, N. A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries. Adv. Mater. 14, 963–965 (2002).

    Article  CAS  Google Scholar 

  28. Ryoo, R., Joo, S. H. & Jun, S. Synthesis of highly ordered carbon molecular sieves via template mediated structural transformations. J. Phys. Chem. B 103, 7743–7746 (1999).

    Article  CAS  Google Scholar 

  29. Lee, J., Kim, J. & Hyeon, T. Recent progress in the synthesis of porous carbon materials. Adv. Mater. 18, 2073–2094 (2006).

    Article  CAS  Google Scholar 

  30. Jiao, F. & Bruce, P. G. Mesoporous crystalline β-MnO2—a reversible positive electrode for rechargeable lithium batteries. Adv. Mater. 19, 657–660 (2007).

    Article  CAS  Google Scholar 

  31. Jiao, F., Shaju, K. M. & Bruce, P. G. Synthesis of nanowire and mesoporous low-temperature LiCoO2 by a post-templating reaction. Angew. Chem. Int. Ed. 117, 6708–6711 (2005).

    Article  Google Scholar 

  32. Ji, X., Herle, P. S., Rho, Y. H. & Nazar, L. F. Carbon/MoO2 composite based on porous semi-graphitized nanorod assemblies from in situ reaction of tri-block polymers. Chem. Mater. 19, 374–383 (2007).

    Article  CAS  Google Scholar 

  33. Grigoriants, I. et al. The use of tin-decorated mesoporous carbon as an anode material for rechargeable lithium batteries. Chem. Commun. 921–923 (2005).

  34. Joo, S. et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 412, 169–172 (2001).

    Article  CAS  Google Scholar 

  35. Ryoo, R., Joo, S., Kruk, M. & Jaroniec, M. Ordered mesoporous carbons. Adv. Mater. 13, 677–681 (2001).

    Article  CAS  Google Scholar 

  36. Lei, J. et al. Immobilization of enzymes in mesoporous materials: Controlling the entrance to nanospace. Micropor. Mesopor. Mater. 73, 121–128 (2004).

    Article  CAS  Google Scholar 

  37. Miessler, G. L. & Tarr, D. A. Inorganic Chemistry (Pearson Education, 1998).

    Google Scholar 

  38. Landau, M. V., Vradman, L., Wang, X. & Titelman, L. High loading TiO2 and ZrO2 nanocrystals ensembles inside the mesopores of SBA-15: Preparation, texture and stability. Micropor. Mesopor. Mater. 78, 117–129 (2005).

    Article  CAS  Google Scholar 

  39. Kim, J., Lee, J. & Hyeon, T. Direct synthesis of uniform mesoporous carbons from the carbonization of as-synthesized silica/triblock copolymer nanocomposites. Carbon 42, 2711–2719 (2004).

    Article  CAS  Google Scholar 

  40. Yamin, H., Gorenshtein, A., Penciner, J., Sternberg, Y. & Peled, E. Lithium sulfur battery. Oxidation/reduction mechanisms of polysulfides in THF solutions. J. Electrochem. Soc. 135, 1045–1048 (1988).

    Article  CAS  Google Scholar 

  41. Kumaresan, K., Mikhaylik, Y. & White, R. E. A mathematical model for a lithium–sulfur cell. J. Electrochem. Soc. 155, A576–A582 (2008).

    Article  CAS  Google Scholar 

  42. Gierszal, K. P., Kim, T.-W., Ryoo, R. & Jaroniec, M. Adsorption and structural properties of ordered mesoporous carbons synthesized by using various carbon precursors and ordered siliceous P6mm and Ia3hd mesostructures as templates. J. Phys. Chem. B 109, 23263–23268 (2005).

    Article  CAS  Google Scholar 

  43. Yu, C., Fan, J., Tian, B. & Zhao, D. Morphology development of mesoporous materials: A colloidal phase separation mechanism. Chem. Mater. 16, 889–898 (2004).

    Article  CAS  Google Scholar 

  44. Jun, S. et al. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J. Am. Chem. Soc. 122, 10712–10713 (2000).

    Article  CAS  Google Scholar 

  45. Brunauer, S., Emmett, P. H. & Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938).

    Article  CAS  Google Scholar 

  46. Barrett, E. P., Joyner, L. G. & Halenda, P. P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373–380 (1951).

    Article  CAS  Google Scholar 

  47. Xu, K. & Angell, C. A. High anodic stability of a new electrolyte solvent: Unsymmetric noncyclic aliphatic sulfone. J. Electrochem. Soc. 145, L70–L72 (1998).

    Article  CAS  Google Scholar 

Download references


NSERC is gratefully acknowledged for financial support. We thank N. Coombs, University of Toronto, for help with acquisition of the TEM and SEM images.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Linda F. Nazar.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1124 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ji, X., Lee, K. & Nazar, L. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nature Mater 8, 500–506 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing