Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Stretchable active-matrix organic light-emitting diode display using printable elastic conductors


Stretchability will significantly expand the applications scope of electronics, particularly for large-area electronic displays, sensors and actuators. Unlike for conventional devices, stretchable electronics can cover arbitrary surfaces and movable parts. However, a large hurdle is the manufacture of large-area highly stretchable electrical wirings with high conductivity. Here, we describe the manufacture of printable elastic conductors comprising single-walled carbon nanotubes (SWNTs) uniformly dispersed in a fluorinated rubber. Using an ionic liquid and jet-milling, we produce long and fine SWNT bundles that can form well-developed conducting networks in the rubber. Conductivity of more than 100 S cm−1 and stretchability of more than 100% are obtained. Making full use of this extraordinary conductivity, we constructed a rubber-like stretchable active-matrix display comprising integrated printed elastic conductors, organic transistors and organic light-emitting diodes. The display could be stretched by 30–50% and spread over a hemisphere without any mechanical or electrical damage.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Printable elastic conductors.
Figure 2: Electrical and mechanical characteristics of printed elastic conductors.
Figure 3: Stretchable display cells comprising an organic LED and a 2T1C driving cell.
Figure 4: Luminance of a stretchable display.


  1. 1

    Khang, D. Y., Jiang, H. Q., Huang, Y. & Rogers, J. A. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311, 208–212 (2006).

    CAS  Article  Google Scholar 

  2. 2

    Sun, Y. G. et al. Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nature Nanotech. 1, 201–207 (2006).

    CAS  Article  Google Scholar 

  3. 3

    Kim, D. H. et al. Stretchable and foldable silicon integrated circuits. Science 320, 507–511 (2008).

    CAS  Article  Google Scholar 

  4. 4

    Kim, D. H. et al. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc. Natl Acad. Sci. USA. 105, 18675–18680 (2008).

    CAS  Article  Google Scholar 

  5. 5

    Ko, H. C. et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 454, 748–753 (2008).

    CAS  Article  Google Scholar 

  6. 6

    Lacour, S. P, Wagner, S., Huang, Z. Y. & Suo, Z. Stretchable gold conductors on elastomeric substrates. Appl. Phys. Lett. 82, 2404–2406 (2003).

    CAS  Article  Google Scholar 

  7. 7

    Lacour, S. P., Jones, J., Wagner, S., Li, T. & Suo, Z. G. Stretchable interconnects for elastic electronic surfaces. Proc. IEEE 93, 1459–1467 (2005).

    CAS  Article  Google Scholar 

  8. 8

    Sekitani, T. et al. A rubberlike stretchable active matrix using elastic conductors. Science 321, 1468–1472 (2008).

    CAS  Article  Google Scholar 

  9. 9

    Rogers, J. A. et al. Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc. Natl Acad. Sci. USA. 98, 4835–4840 (2001).

    CAS  Article  Google Scholar 

  10. 10

    Gelinck, G. H. et al. Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nature Mater. 3, 106–110 (2004).

    CAS  Article  Google Scholar 

  11. 11

    Andersson, P. et al. Active matrix displays based on all-organic electrochemical smart pixels printed on paper. Adv. Mater. 14, 1460–1464 (2002).

    CAS  Article  Google Scholar 

  12. 12

    Klauk, H., Gundlach, D. J., Nichols, J. A. & Jackson, T. N. Pentacene organic thin-film transistors for circuit and display applications. IEEE Trans. Electron Devices 46, 1258–1263 (1999).

    CAS  Google Scholar 

  13. 13

    Zhou, L. S. et al. All-organic active matrix flexible display. Appl. Phys. Lett. 88, 083502 (2006).

    Article  Google Scholar 

  14. 14

    Someya, T. et al. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl Acad. Sci. USA. 101, 9966–9970 (2004).

    CAS  Article  Google Scholar 

  15. 15

    Someya, T. et al. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc. Natl Acad. Sci. USA. 102, 12321–12325 (2005).

    CAS  Google Scholar 

  16. 16

    Sekitani, T. et al. A large-area wireless power-transmission sheet using printed organic transistors and plastic MEMS switches. Nature Mater. 6, 413–417 (2007).

    CAS  Article  Google Scholar 

  17. 17

    Kato, Y. et al. Sheet-type Braille displays by integrating organic field-effect transistors and polymeric actuators. IEEE Trans. Electron Devices 54, 202–209 (2007).

    CAS  Article  Google Scholar 

  18. 18

    Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009).

    CAS  Article  Google Scholar 

  19. 19

    Iijima, S. & Ichihashi, T. Single-shell carbon nanotube of 1-nm diameter. Nature 363, 603–605 (1993).

    CAS  Article  Google Scholar 

  20. 20

    Hata, K. et al. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306, 1362–1364 (2004).

    CAS  Article  Google Scholar 

  21. 21

    Welton, T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99, 2071–2083 (1999).

    CAS  Article  Google Scholar 

  22. 22

    Fukushima, T. et al. Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science 300, 2072–2074 (2003).

    CAS  Article  Google Scholar 

  23. 23

    Fukushima, T. & Aida, T. Carbon nanotubes encounter ionic liquids to create new soft materials. Chem. Eur. J. 13, 5048–5058 (2007).

    CAS  Article  Google Scholar 

  24. 24

    Dimitrakopoulos, C. D. & Malenfant, P. R. L. Organic thin film transistors for large area electronics. Adv. Mater. 14, 99–117 (2002).

    CAS  Article  Google Scholar 

  25. 25

    Garnier, F., Hajlaoui, R., Yassar, A. & Srivastava, P. All-polymer field-effect transistor realized by printing techniques. Science 265, 1684–1686 (1994).

    CAS  Article  Google Scholar 

  26. 26

    Briseno, A. L. et al. Patterning organic single-crystal transistor arrays. Nature 444, 913–917 (2006).

    CAS  Article  Google Scholar 

  27. 27

    Klauk, H., Zschieschang, U., Pflaum, J. & Halik, M. Ultralow-power organic complementary circuits. Nature 445, 745–748 (2007).

    CAS  Article  Google Scholar 

  28. 28

    Friend, R. H. et al. Electroluminescence in conjugated polymers. Nature 397, 121–128 (1999).

    CAS  Article  Google Scholar 

  29. 29

    Park, C. et al. Dispersion of single wall carbon nanotubes by in situ polymerization under sonication. Chem. Phys. Lett. 364, 303–308 (2002).

    CAS  Article  Google Scholar 

  30. 30

    Spinks, G. M. et al. Carbon-nanotube-reinforced polyaniline fibers for high-strength artificial muscles. Adv. Mater. 18, 637–640 (2006).

    CAS  Article  Google Scholar 

  31. 31

    Shim, B. S. et al. Integration of conductivity, transparency, and mechanical strength into highly homogeneous layer-by-layer composites of single-walled carbon nanotubes for optoelectronics. Chem. Mater. 19, 5467–5474 (2007).

    CAS  Article  Google Scholar 

  32. 32

    Mukai, K. et al. Highly conductive sheets from millimetre-long single-walled carbon nanotubes and ionic liquids: Application to fast-moving, low-voltage electromechanical actuators operable in air. Adv. Mater. 21, 1582–1585 (2009).

    CAS  Article  Google Scholar 

  33. 33

    Lo, S. C. et al. Green phosphorescent dendrimer for light-emitting diodes. Adv. Mater. 14, 975–979 (2002).

    CAS  Article  Google Scholar 

  34. 34

    Park, J. U. et al. High-resolution electrohydrodynamic jet printing. Nature Mater. 6, 782–789 (2007).

    CAS  Article  Google Scholar 

  35. 35

    Noh, Y. Y., Zhao, N., Caironi, M. & Sirringhaus, H. Downscaling of self-aligned, all-printed polymer thin-film transistors. Nature Nanotech. 2, 784–789 (2007).

    CAS  Article  Google Scholar 

  36. 36

    Sekitani, T. et al. Organic transistors manufactured using inkjet technology with subfemtoliter accuracy. Proc. Natl Acad. Sci. USA. 105, 4976–4980 (2008).

    CAS  Article  Google Scholar 

Download references


This study was partially supported by the Grant-in-Aid for Scientific Research (KAKENHI; WAKATE S), and the Special Coordination Funds for Promoting and Technology. We thank K. Asaka, National Institute of Advanced Industrial Science and Technology, for valuable discussion. We also thank GENESIS for designing the Multi channel display driving system (G08MN0029), DAIKIN INDUSTRIES, for generous supply of fluorinated copolymer, and Daisankasei for a high-purity parylene (diX-SR).

Author information




T.Se. and T.So. planned the project and data analysis. T.Se., H.N., H.M, T.F., T.A., K.H. and T.So carried out experimental work. (T.Se., T.F., T.A., T.So.: elastic conductors; T.Se. and T.So.: organic transistors; H.N. and H.M.: organic LEDs; K.H.: carbon nanotubes.)

Corresponding author

Correspondence to Takao Someya.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2003 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sekitani, T., Nakajima, H., Maeda, H. et al. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nature Mater 8, 494–499 (2009).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing