Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Templated formation of giant polymer vesicles with controlled size distributions


Unilamellar polymer vesicles are formed when a block copolymer self-assembles to form a single bilayer structure, with a hydrophobic core and hydrophilic surfaces, and the resulting membrane folds over and rearranges by connecting its edges to enclose a space. The physics of self-assembly tightly specifies the wall thickness of the resulting vesicle, but, both for polymer vesicles and phospholipids, no mechanism strongly selects for the overall size, so the size distribution of vesicles tends to be very polydisperse. We report a method for the production of controlled size distributions of micrometre-sized (that is, giant) vesicles combining the ‘top-down’ control of micrometre-sized features (vesicle diameter) by photolithography and dewetting with the ‘bottom-up’ control of nanometre-sized features (membrane thickness) by molecular self-assembly. It enables the spontaneous creation of unilamellar vesicles with a narrow size distribution that could find applications in drug and gene delivery, nano- and micro-reactors, substrates for macromolecular crystallography and model systems for studies of membrane function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the controlled formation of vesicles.
Figure 2: Schematic representations of the polymer island formation and the confocal microscopy set-up.
Figure 3: Images of the polymer islands, the vesicle formation process and vesicle size distributions.
Figure 4: Comparison of vesicle-forming procedures.

Similar content being viewed by others


  1. Kita-Tokarczyk, K., Grumelard, J., Haefele, T. & Meier, W. Block copolymer vesicles—using concepts from polymer chemistry to mimic biomembranes. Polymer 46, 3540–3563 (2005).

    Article  CAS  Google Scholar 

  2. Discher, D. E. & Eisenberg, A. Polymer vesicles. Science 297, 967–973 (2002).

    Article  CAS  Google Scholar 

  3. Lipowsky, R. The conformation of membranes. Nature 349, 475–481 (1991).

    Article  CAS  Google Scholar 

  4. Battaglia, G. & Ryan, A. J. Bilayers and interdigitation in block copolymer vesicles. J. Am. Chem. Soc. 127, 8757–8764 (2005).

    Article  CAS  Google Scholar 

  5. Matsen, M. W. & Bates, F. S. Origins of complex self-assembly in block copolymers. Macromolecules 29, 7641–7644 (1996).

    Article  CAS  Google Scholar 

  6. Battaglia, G. & Ryan, A. J. Effect of amphiphile size on the transformation from a lyotropic gel to a vesicular dispersion. Macromolecules 39, 798–805 (2006).

    Article  CAS  Google Scholar 

  7. Battaglia, G., Ryan, A. J. & Tomas, S. Polymeric vesicle permeability: A facile chemical assay. Langmuir 22, 4910–4913 (2006).

    Article  CAS  Google Scholar 

  8. Lin, J. J. et al. The effect of polymer chain length and surface density on the adhesiveness of functionalized polymersomes. Langmuir 20, 5493–5500 (2004).

    Article  CAS  Google Scholar 

  9. Lin, J. J., Bates, F. S., Hammer, D. A. & Silas, J. A. Adhesion of polymer vesicles. Phys. Rev. Lett. 95, 026101 (2005).

    Article  Google Scholar 

  10. Lin, J. J., Ghoroghchian, P., Zhang, Y. & Hammer, D. A. Adhesion of antibody-functionalized polymersomes. Langmuir 22, 3975–3979 (2006).

    Article  CAS  Google Scholar 

  11. Photos, P. J., Bacakova, L., Discher, B., Bates, F. S. & Discher, D. E. Polymer vesicles in vivo: Correlations with PEG molecular weight. J. Control. Release 90, 323–334 (2003).

    Article  CAS  Google Scholar 

  12. Ahmed, F. & Discher, D. E. Self-porating polymersomes of PEG-PLA and PEG-PCL: Hydrolysis-triggered controlled release vesicles. J. Control. Release 96, 37–53 (2004).

    Article  CAS  Google Scholar 

  13. Szoka, F. & Papahadjopoulos, D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc. Natl Acad. Sci. USA 75, 4194–4198 (1978).

    Article  CAS  Google Scholar 

  14. Moscho, A., Orwar, O., Chiu, D. T., Modi, B. P. & Zare, R. N. Rapid preparation of giant unilamellar vesicles. Proc. Natl Acad. Sci. USA 93, 11443–11447 (1996).

    Article  CAS  Google Scholar 

  15. Kabanov, A. V., Bronich, T. K., Kabanov, V. A., Yu, K. & Eisenberg, A. Spontaneous formation of vesicles from complexes of block ionomers and surfactants. J. Am. Chem. Soc. 120, 9941–9942 (1998).

    Article  CAS  Google Scholar 

  16. Luo, L. B. & Eisenberg, A. Thermodynamic size control of block copolymer vesicles in solution. Langmuir 17, 6804–6811 (2001).

    Article  CAS  Google Scholar 

  17. Luo, L. B. & Eisenberg, A. Thermodynamic stabilization mechanism of block copolymer vesicles. J. Am. Chem. Soc. 123, 1012–1013 (2001).

    Article  CAS  Google Scholar 

  18. Choucair, A. & Eisenberg, A. Control of amphiphilic block copolymer morphologies using solution conditions. Eur. Phys. J. E 10, 37–44 (2003).

    Article  CAS  Google Scholar 

  19. Shen, H. W. & Eisenberg, A. Morphological phase diagram for a ternary system of block copolymer PS310-b-PAA(52)/dioxane/H2O. J. Phys. Chem. B 103, 9473–9487 (1999).

    Article  CAS  Google Scholar 

  20. Gregoriadis, G. Liposome Technology. Vol. I: Preparation of Liposomes (CRC Press, 1984).

    Google Scholar 

  21. Angelova, M. I. & Dimitrov, D. S. Liposome electroformation. Faraday Discuss. Chem. Soc. 81, 303–311 (1986).

    Article  CAS  Google Scholar 

  22. Menger, F. M. & Angelova, M. I. Giant vesicles: Imitating the cytological processes of cell membranes. Acc. Chem. Res. 31, 789–797 (1998).

    Article  CAS  Google Scholar 

  23. Olson, F., Hunt, C. A., Szoka, F. C., Vail, W. J. & Papahadjopoulos, D. Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes. Biochim. Biophys. Acta 557, 9–23 (1979).

    Article  CAS  Google Scholar 

  24. Jain, S. & Bates, F. S. Consequences of nonergodicity in aqueous binary PEO-PB micellar dispersions. Macromolecules 37, 1511–1523 (2004).

    Article  CAS  Google Scholar 

  25. Taylor, P., Xu, C., Fletcher, P. D. I. & Paunov, V. N. A novel technique for preparation of monodisperse giant liposomes. Chem. Commun. 14, 1732–1733 (2003).

    Article  Google Scholar 

  26. Battaglia, G. & Ryan, A. J. The evolution of vesicles from bulk lamellar gels. Nature Mater. 4, 869–876 (2005).

    Article  CAS  Google Scholar 

  27. Hauschild, S. et al. Direct preparation and loading of lipid and polymer vesicles using inkjets. Small 1, 1177–1180 (2005).

    Article  CAS  Google Scholar 

  28. LoPresti, C., Lomas, H., Massignani, M., Smart, T. & Battaglia, G. Polymersomes: Nature inspired nanometer sized compartments. J. Mater. Chem. (in the press, 2008).

  29. Leggett, G. J. Scanning near-field photolithography-surface photochemistry with nanoscale spatial resolution. Chem. Soc. Rev. 35, 1150–1161 (2006).

    Article  CAS  Google Scholar 

Download references


J.R.H. thanks the EPSRC for financial support, R.E.D. is grateful to the BBSRC, G.J.L. thanks the RSC Analytical Chemistry Trust Fund and the EPSRC for support and A.J.R. thanks ICI plc.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Jonathan R. Howse or Robert E. Ducker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howse, J., Jones, R., Battaglia, G. et al. Templated formation of giant polymer vesicles with controlled size distributions. Nature Mater 8, 507–511 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing