Abstract
The molecular and physical information coded within the extracellular milieu is informing the development of a new generation of biomaterials for tissue engineering. Several powerful extracellular influences have already found their way into cell-instructive scaffolds, while others remain largely unexplored. Yet for commercial success tissue engineering products must be not only efficacious but also cost-effective, introducing a potential dichotomy between the need for sophistication and ease of production. This is spurring interest in recreating extracellular influences in simplified forms, from the reduction of biopolymers into short functional domains, to the use of basic chemistries to manipulate cell fate. In the future these exciting developments are likely to help reconcile the clinical and commercial pressures on tissue engineering.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
A 3D-printed molybdenum-containing scaffold exerts dual pro-osteogenic and anti-osteoclastogenic effects to facilitate alveolar bone repair
International Journal of Oral Science Open Access 05 September 2022
-
Selective biofunctionalization of 3D cell-imprinted PDMS with collagen immobilization for targeted cell attachment
Scientific Reports Open Access 27 July 2022
-
Water as the often neglected medium at the interface between materials and biology
Nature Communications Open Access 21 July 2022
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Viola, J., Lal, B. & Grad, O. The Emergence of Tissue Engineering as a Research Field (2003); available at <http://www.nsf.gov/pubs/2004/nsf0450/start.htm>.
Atala, A., Bauer, S. B., Soker, S., Yoo, J. J. & Retik, A. B. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367, 1241–1246 (2006).
Macchiarini, P. et al. Clinical transplantation of a tissue-engineered airway. Lancet 372, 2023–2030 (2008).
Lysaght, M. J., Jaklenec, A. & Deweerd, E. Great expectations: Private sector activity in tissue engineering, regenerative medicine, and stem cell therapeutics. Tissue Eng. Part A 14, 305–315 (2008).
US Department of Health and Human Services. 2020: A New Vision — A Future for Regenerative Medicine (2006); available at <http://www.hhs.gov/reference/newfuture.shtml>.
Bouchie, A. Tissue engineering firms go under. Nature Biotechnol. 20, 1178–1179 (2002).
Michalopoulos, G. K. & DeFrances, M. C. Liver regeneration. Science 276, 60–66 (1997).
Ford, C. E., Hamerton, J. L., Barnes, D. W. & Loutit, J. F. Cytological identification of radiation-chimaeras. Nature 177, 452–454 (1956).
Mathe, G., Amiel, J. L., Schwarzenberg, L., Cattan, A. & Schneider, M. Haematopoietic chimera in man after allogenic (homologous) bone-marrow transplantation. (Control of the secondary syndrome. Specific tolerance due to the chimerism). Br. Med. J. 5373, 1633–1635 (1963).
Pittenger, M. F. et al. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147 (1999).
Richards, L. J., Kilpatrick, T. J. & Bartlett, P. F. De novo generation of neuronal cells from the adult mouse brain. Proc. Natl Acad. Sci. USA 89, 8591–8595 (1992).
da Silva, M. L., Chagastelles, P. C. & Nardi, N. B. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J. Cell Sci. 119, 2204–2213 (2006).
Crisan, M. et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3, 301–313 (2008).
Stevens, M. M. et al. In vivo engineering of organs: the bone bioreactor. Proc. Natl Acad. Sci. USA 102, 11450–11455 (2005).
Litinski, V. & Kim, L. Regenerative Medicine Industry Briefing (MaRS Venture Group, 2008).
Breitbach, M. et al. Potential risks of bone marrow cell transplantation into infarcted hearts. Blood 110, 1362–1369 (2007).
Engler, A. J. et al. Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J. Cell Biol. 166, 877–887 (2004).
Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).
Taylor, C. J. et al. Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet 366, 2019–2025 (2005).
Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).
Kim, J. B. et al. Oct4-induced pluripotency in adult neural stem cells. Cell 136, 411–419 (2009).
Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).
Wernig, M. et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448, 318–324 (2007).
Kaji, K. et al. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458, 771–775 (2009).
Nichols, S. A., Dirks, W., Pearse, J. S. & King, N. Early evolution of animal cell signaling and adhesion genes. Proc. Natl Acad. Sci. USA 103, 12451–12456 (2006).
Nose, A., Tsuji, K. & Takeichi, M. Localization of specificity determining sites in cadherin cell adhesion molecules. Cell 61, 147–155 (1990).
Takeichi, M., Inuzuka, H., Shimamura, K., Matsunaga, M. & Nose, A. Cadherin-mediated cell–cell adhesion and neurogenesis. Neurosci. Res. Suppl. 13, S92–S96 (1990).
de Bank, P. A., Kellam, B., Kendall, D. A. & Shakesheff, K. M. Surface engineering of living myoblasts via selective periodate oxidation. Biotechnol. Bioeng. 81, 800–808 (2003).
Urist, M. R. Bone: formation by autoinduction. Science 150, 893–899 (1965).
Damien, C. J. & Parsons, J. R. Bone graft and bone graft substitutes: a review of current technology and applications. J. Appl. Biomater. 2, 187–208 (1991).
Ott, H. C. et al. Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nature Med. 14, 213–221 (2008).
Hollister, S. J. Porous scaffold design for tissue engineering. Nature Mater. 4, 518–524 (2005).
L'Heureux, N. et al. Technology insight: the evolution of tissue-engineered vascular grafts: from research to clinical practice. Nature Clin. Pract. Cardiovasc. Med. 4, 389–395 (2007).
Butler, D. L. et al. Functional tissue engineering for tendon repair: A multidisciplinary strategy using mesenchymal stem cells, bioscaffolds, and mechanical stimulation. J. Orthop. Res. 26, 1–9 (2008).
Moutos, F. T., Freed, L. E. & Guilak, F. A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nature Mater. 6, 162–167 (2007).
Sahiner, N., Jha, A. K., Nguyen, D. & Jia, X. Fabrication and characterization of cross-linkable hydrogel particles based on hyaluronic acid: potential application in vocal fold regeneration. J. Biomater. Sci. Polym. E 19, 223–243 (2008).
Li, W. J., Mauck, R. L., Cooper, J. A., Yuan, X. N. & Tuan, R. S. Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering. J. Biomech. 40, 1686–1693 (2007).
Millon, L. E., Mohammadi, H. & Wan, W. K. Anisotropic polyvinyl alcohol hydrogel for cardiovascular applications. J. Biomed. Mater. Res. B 79, 305–311 (2006).
Engelmayr, G. C. et al. Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nature Mater. 7, 1003–1010 (2008).
Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).
Pelham, R. J. & Wang, Y. l. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl Acad. Sci. USA 94, 13661–13665 (1997).
Curtis, A. S., Dalby, M. & Gadegaard, N. Cell signaling arising from nanotopography: implications for nanomedical devices. Nanomedicine 1, 67–72 (2006).
Stevens, M. M. & George, J. H. Exploring and engineering the cell surface interface. Science 310, 1135–1138 (2005).
Cukierman, E., Pankov, R., Stevens, D. R. & Yamada, K. M. Taking cell-matrix adhesions to the third dimension. Science 294, 1708–1712 (2001).
Stephens, L. E. et al. Deletion of beta 1 integrins in mice results in inner cell mass failure and peri-implantation lethality. Genes Dev. 9, 1883–1895 (1995).
George, E. L., Georges-Labouesse, E. N., Patel-King, R. S., Rayburn, H. & Hynes, R. O. Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 119, 1079–1091 (1993).
Kothapalli, D., Flowers, J., Xu, T., Pure, E. & Assoian, R. K. Differential activation of ERK and Rac mediates the proliferative and anti-proliferative effects of hyaluronan and CD44. J. Biol. Chem. 283, 31823–31829 (2008).
Serban, M. A. & Prestwich, G. D. Modular extracellular matrices: Solutions for the puzzle. Methods 45, 93–98 (2008).
Bonzani, I. C. et al. Synthesis of two-component injectable polyurethanes for bone tissue engineering. Biomaterials 28, 423–433 (2007).
Kim, K. & Fisher, J. P. Nanoparticle technology in bone tissue engineering. J. Drug Target. 15, 241–252 (2007).
Lendlein, A. & Langer, R. Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296, 1673–1676 (2002).
Lee, J., Bae, Y. H., Sohn, Y. S. & Jeong, B. Thermogelling aqueous solutions of alternating multiblock copolymers of poly(L-lactic acid) and poly(ethylene glycol). Biomacromolecules 7, 1729–1734 (2006).
Baroli, B. Hydrogels for tissue engineering and delivery of tissue-inducing substances. J. Pharm. Sci. 96, 2197–2223 (2007).
Benoit, D. S. W., Schwartz, M. P., Durney, A. R. & Anseth, K. S. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nature Mater. 7, 816–823 (2008).
Schense, J. C., Bloch, J., Aebischer, P. & Hubbell, J. A. Enzymatic incorporation of bioactive peptides into fibrin matrices enhances neurite extension. Nature Biotech. 18, 415–419 (2000).
Silva, G. A. et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303, 1352–1355 (2004).
Underwood, P. A., Bennett, F. A., Kirkpatrick, A., Bean, P. A. & Moss, B. A. Evidence for the location of a binding sequence for the alpha 2 beta 1 integrin of endothelial cells, in the beta 1 subunit of laminin. Biochem. J. 309, 765–771 (1995).
Comisar, W. A., Kazmers, N. H., Mooney, D. J. & Linderman, J. J. Engineering RGD nanopatterned hydrogels to control preosteoblast behavior: A combined computational and experimental approach. Biomaterials 28, 4409–4417 (2007).
Benoit, D. S. W. & Anseth, K. S. The effect on osteoblast function of colocalized RGD and PHSRN epitopes on PEG surfaces. Biomaterials 26, 5209–5220 (2005).
Alsberg, E., Anderson, K. W., Albeiruti, A., Rowley, J. A. & Mooney, D. J. Engineering growing tissues. Proc. Natl Acad. Sci. USA 99, 12025–12030 (2002).
de Mel, A., Jell, G., Stevens, M. M. & Seifalian, A. M. Biofunctionalization of biomaterials for accelerated in situ endothelialization: A review. Biomacromolecules 9, 2969–2979 (2008).
Dunehoo, A. L. et al. Cell adhesion molecules for targeted drug delivery. J. Pharm. Sci. 95, 1856–1872 (2006).
Lutolf, M. P. et al. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc. Natl Acad. Sci. USA 100, 5413–5418 (2003).
Girotti, A. et al. Design and bioproduction of a recombinant multi(bio)functional elastin-like protein polymer containing cell adhesion sequences for tissue engineering purposes. J. Mater. Sci. Mater. Med. 15, 479–484 (2004).
Schenk, S. & Quaranta, V. Tales from the crypt[ic] sites of the extracellular matrix. Trends Cell Biol. 13, 366–375 (2003).
Shaub, A. Unravelling the extracellular matrix. Nature Cell Biol. 1, E173-E175 (1999).
Hocking, D. C., Sottile, J. & Keown-Longo, P. J. Fibronectin's III-1 module contains a conformation-dependent binding site for the amino-terminal region of fibronectin. J. Biol. Chem. 269, 19183–19187 (1994).
Wipff, P. J., Rifkin, D. B., Meister, J. J. & Hinz, B. Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J. Cell Biol. 179, 1311–1323 (2007).
Polesskaya, A., Seale, P. & Rudnicki, M. A. Wnt signaling induces the myogenic specification of resident CD45+ adult stem cells during muscle regeneration. Cell 113, 841–852 (2003).
Wang, Z. Z. et al. Endothelial cells derived from human embryonic stem cells form durable blood vessels in vivo. Nature Biotechnol. 25, 317–318 (2007).
Jiang, W. et al. In vitro derivation of functional insulin-producing cells from human embryonic stem cells. Cell Res. 17, 333–344 (2007).
Sumi, T., Tsuneyoshi, N., Nakatsuji, N. & Suemori, H. Defining early lineage specification of human embryonic stem cells by the orchestrated balance of canonical Wnt/beta-catenin, activin/nodal and BMP signaling. Development 135, 2969–2979 (2008).
Hill, E., Boontheekul, T. & Mooney, D. J. Regulating activation of transplanted cells controls tissue regeneration. Proc. Natl Acad. Sci. USA 103, 2494–2499 (2006).
Hanson, J. A. et al. Nanoscale double emulsions stabilized by single-component block copolypeptides. Nature 455, 85–88 (2008).
Richardson, T. P., Peters, M. C., Ennett, A. B. & Mooney, D. J. Polymeric system for dual growth factor delivery. Nature Biotechnol. 19, 1029–1034 (2001).
Sohier, J. et al. Dual release of proteins from porous polymeric scaffolds. J. Controlled Release 111, 95–106 (2006).
Liu, H. W., Chen, C. H., Tsai, C. L. & Hsiue, G. H. Targeted delivery system for juxtacrine signaling growth factor based on rhBMP-2-mediated carrier-protein conjugation. Bone 39, 825–836 (2006).
Alberti, K. et al. Functional immobilization of signaling proteins enables control of stem cell fate. Nature Methods 5, 645–650 (2008).
Klenkler, B. J. Characterization of EGF coupling to aminated silicone rubber surfaces. Biotechnol. Bioeng. 95, 1158–1166 (2006).
Mann, B. K., Schmedlen, R. H. & West, J. L. Tethered-TGF-β increases extracellular matrix production of vascular smooth muscle cells. Biomaterials 22, 439–444 (2001).
Backer, M. V., Patel, V., Jehning, B. T., Claffey, K. P. & Backer, J. M. Surface immobilization of active vascular endothelial growth factor via a cysteine-containing tag. Biomaterials 27, 5452–5458 (2006).
Zisch, A. H., Schenk, U., Schense, J. C., Sakiyama-Elbert, S. E. & Hubbell, J. A. Covalently conjugated VEGF-fibrin matrices for endothelialization. J. Controlled Release 72, 101–113 (2001).
Raman, R., Sasisekharan, V. & Sasisekharan, R. Structural insights into biological roles of protein–glycosaminoglycan interactions. Chem. Biol. 12, 267–277 (2005).
Rawat, M., Gama, C. I., Matson, J. B. & Hsieh-Wilson, L. C. Neuroactive chondroitin sulfate glycomimetics. J. Am. Chem. Soc. 130, 2959–2961 (2008).
Gama, C. I. et al. Sulfation patterns of glycosaminoglycans encode molecular recognition and activity. Nature Chem. Biol. 2, 467–473 (2006).
Pellegrini, L., Burke, D. F., von Delft, F., Mulloy, B. & Blundell, T. L. Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature 407, 1029–1034 (2000).
Sakiyama-Elbert, S. E. & Hubbell, J. A. Development of fibrin derivatives for controlled release of heparin-binding growth factors. J. Controlled Release 65, 389–402 (2000).
Zhang, L., Furst, E. M. & Kiick, K. L. Manipulation of hydrogel assembly and growth factor delivery via the use of peptide-polysaccharide interactions. J. Controlled Release 114, 130–142 (2006).
Singh, M., Berkland, C. & Detamore, M. S. Strategies and applications for incorporating physical and chemical signal gradients in tissue engineering. Tissue Eng. B 14, 341–366 (2008).
Lin, X., Takahashi, K., Liu, Y., Derrien, A. & Zamora, P. O. A synthetic, bioactive PDGF mimetic with binding to both α-PDGF and β-PDGF receptors. Growth Factors 25, 87–93 (2007).
Lin, X. et al. Synthetic peptide F2A4-K-NS mimics fibroblast growth factor-2 in vitro and is angiogenic in vivo. Int. J. Mol. Med. 17, 833–839 (2006).
Cambon, K. et al. A synthetic neural cell adhesion molecule mimetic peptide promotes synaptogenesis, enhances presynaptic function, and facilitates memory consolidation. J. Neurosci. 24, 4197–4204 (2004).
Nie, H. & Wang, C. H. Fabrication and characterization of PLGA/HAp composite scaffolds for delivery of BMP-2 plasmid DNA. J. Controlled Release 120, 111–121 (2007).
Wrighton, N. C. et al. Increased potency of an erythropoietin peptide mimetic through covalent dimerization. Nature Biotechnol. 15, 1261–1265 (1997).
Domling, A., Beck, B., Baumbach, W. & Larbig, G. Towards erythropoietin mimicking small molecules. Bioorg. Med. Chem. Lett. 17, 379–384 (2007).
Hwang, N. S., Varghese, S. & Elisseeff, J. Controlled differentiation of stem cells. Adv. Drug Deliv. Rev. 60, 199–214 (2008).
Hench, L. L. & Paschall, H. A. Direct chemical bond of bioactive glass-ceramic materials to bone and muscle. J. Biomed. Mater. Res. 7, 25–42 (1973).
Xynos, I. D., Edgar, A. J., Buttery, L. D., Hench, L. L. & Polak, J. M. Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution. J. Biomed. Mater. Res. 55, 151–157 (2001).
Barbucci, R. et al. Fibroblast cell behavior on bound and adsorbed fibronectin onto hyaluronan and sulfated hyaluronan substrates. Biomacromolecules 6, 638–645 (2005).
Freeman, I., Kedem, A. & Cohen, S. The effect of sulfation of alginate hydrogels on the specific binding and controlled release of heparin-binding proteins. Biomaterials 29, 3260–3268 (2008).
Rouet, V. et al. A synthetic glycosaminoglycan mimetic binds vascular endothelial growth factor and modulates angiogenesis. J. Biol. Chem. 280, 32792–32800 (2005).
Chaterji, S. & Gemeinhart, R. A. Enhanced osteoblast-like cell adhesion and proliferation using sulfonate-bearing polymeric scaffolds. J. Biomed. Mater. Res. A 83, 990–998 (2007).
Guerrini, M. et al. Minimal heparin/heparan sulfate sequences for binding to fibroblast growth factor-1. Biochem. Biophys. Res. Commun. 292, 222–230 (2002).
Raman, R., Venkataraman, G., Ernst, S., Sasisekharan, V. & Sasisekharan, R. Structural specificity of heparin binding in the fibroblast growth factor family of proteins. Proc. Natl Acad. Sci. USA 100, 2357–2362 (2003).
Tully, S. E. et al. A chondroitin sulfate small molecule that stimulates neuronal growth. J. Am. Chem. Soc. 126, 7736–7737 (2004).
Lever, R. & Page, C. P. Novel drug development opportunities for heparin. Nature Rev. Drug Discov. 1, 140–148 (2002).
Sarrazin, S., Bonnaffe, D., Lubineau, A. & Lortat-Jacob, H. Heparan sulfate mimicry: a synthetic glycoconjugate that recognises the heparin binding domain of interferon-γ inhibits the cytokine activity. J. Biol. Chem. 280, 37558–37564 (2005).
Seeberger, P. H. & Werz, D. B. Synthesis and medical applications of oligosaccharides. Nature 446, 1046–1051 (2007).
Adibekian, A. et al. De novo synthesis of uronic acid building blocks for assembly of heparin oligosaccharides. Chem. Eur. J. 13, 4510–4522 (2007).
Tatai, J., Osztrovszky, G., Kajtár-Peredy, M. & Fügedi, P. An efficient synthesis of L-idose and L-iduronic acid thioglycosides and their use for the synthesis of heparin oligosaccharides. Carbohydr. Res. 343, 596–606 (2008).
Polat, T. & Wong, C. H. Anomeric reactivity-based one-pot synthesis of heparin-like oligosaccharides. J. Am. Chem. Soc. 129, 12795–12800 (2007).
Zhang, Z. et al. Solution structures of chemoenzymatically synthesized heparin and its precursors. J. Am. Chem. Soc. 130, 12998–13007 (2008).
Wakao, M. et al. Sugar chips immobilized with synthetic sulfated disaccharides of heparin/heparan sulfate partial structure. Bioorg. Med. Chem. Lett. 18, 2499–2504 (2008).
Woo, K. M., Chen, V. J. & Ma, P. X. Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. J. Biomed. Mater. Res. A 67, 531–537 (2003).
Vogler, E. A. Structure and reactivity of water at biomaterial surfaces. Adv. Colloid Interface Sci. 74, 69–117 (1998).
Keselowsky, B. G., Collard, D. M. & García, A. J. Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proc. Natl Acad. Sci. USA 102, 5953–5957 (2005).
Anderson, D. G., Putnam, D., Lavik, E. B., Mahmood, T. A. & Langer, R. Biomaterial microarrays: rapid, microscale screening of polymer-cell interaction. Biomaterials 26, 4892–4897 (2005).
Flaim, C. J., Chien, S. & Bhatia, S. N. An extracellular matrix microarray for probing cellular differentiation. Nature Methods 2, 119–125 (2005).
Anderson, D. G., Levenberg, S. & Langer, R. Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. Nature Biotechnol. 22, 863–866 (2004).
Chen, J. L., Chu, B. & Hsiao, B. S. Mineralization of hydroxyapatite in electrospun nanofibrous poly(L-lactic acid) scaffolds. J. Biomed. Mater. Res. A 79, 307–317 (2006).
Song, J., Malathong, V. & Bertozzi, C. R. Mineralization of synthetic polymer scaffolds: a bottom-up approach for the development of artificial bone. J. Am. Chem. Soc. 127, 3366–3372 (2005).
Robey, P. G. in Principles of Bone Biology (eds Bilezikian, J. P., Raisz, L. G. & Rodan, G. A.) 225–237 (Academic, 2002).
Nuttelman, C. R., Benoit, D. S. W., Tripodi, M. C. & Anseth, K. S. The effect of ethylene glycol methacrylate phosphate in PEG hydrogels on mineralization and viability of encapsulated hMSCs. Biomaterials 27, 1377–1386 (2006).
von Degenfeld, G. et al. Microenvironmental VEGF distribution is critical for stable and functional vessel growth in ischemia. FASEB J. 20, 2657–2659 (2006).
Hao, X. et al. Angiogenic effects of sequential release of VEGF-A165 and PDGF-BB with alginate hydrogels after myocardial infarction. Cardiovasc. Res. 75, 178–185 (2007).
Trentin, D., Hall, H., Wechsler, S. & Hubbell, J. A. Peptide-matrix-mediated gene transfer of an oxygen-insensitive hypoxia-inducible factor-1α variant for local induction of angiogenesis. Proc. Natl Acad. Sci. USA 103, 2506–2511 (2006).
Saunders, W. B. et al. Coregulation of vascular tube stabilization by endothelial cell TIMP-2 and pericyte TIMP-3. J. Cell Biol. 175, 179–191 (2006).
Hunter, G. K. & Goldberg, H. A. Modulation of crystal formation by bone phosphoproteins: role of glutamic acid-rich sequences in the nucleation of hydroxyapatite by bone sialoprotein. Biochem. J. 302, 175–179 (1994).
Tye, C. E. et al. Delineation of the hydroxyapatite-nucleating domains of bone sialoprotein. J. Biol. Chem. 278, 7949–7955 (2003).
de Paz, J. L., Noti, C., Böhm, F., Werner, S. & Seeberger, P. H. Potentiation of fibroblast growth factor activity by synthetic heparin oligosaccharide glycodendrimers. Chem. Biol. 14, 879–887 (2007).
Lu, H. H. & Jiang, J. Interface tissue engineering and the formulation of multiple-tissue systems. Adv. Biochem. Eng. Biotechnol. 102, 91–111 (2006).
Schaefer, D. et al. In vitro generation of osteochondral composites. Biomaterials 21, 2599–2606 (2000).
O'Shea, T. M. & Miao, X. Bilayered scaffolds for osteochondral tissue engineering. Tissue Eng. B 14, 447–464 (2008).
Schek, R. M., Taboas, J. M., Segvich, S. J., Hollister, S. J. & Krebsbach, P. H. Engineered osteochondral grafts using biphasic composite solid free-form fabricated scaffolds. Tissue Eng. 10, 1376–1385 (2004).
Tampieri, A. et al. Design of graded biomimetic osteochondral composite scaffolds. Biomaterials 29, 3539–3546 (2008).
Kim, T.-K. et al. Experimental model for cartilage tissue engineering to regenerate the zonal organization of articular cartilage. Osteoarthr. Cartilage 11, 653–664 (2003).
Spalazzi, J. P. et al. In vivo evaluation of a multiphased scaffold designed for orthopaedic interface tissue engineering and soft tissue-to-bone integration. J. Biomed. Mater. Res. A 86, 1–12 (2008).
Phillips, J. E., Burns, K. L., Le Doux, J. M., Guldberg, R. E. & García, A. J. Engineering graded tissue interfaces. Proc. Natl Acad. Sci. USA 105, 12170–12175 (2008).
Cooper, J. A. et al. Biomimetic tissue-engineered anterior cruciate ligament replacement. Proc. Natl Acad. Sci. USA 104, 3049–3054 (2007).
Brey, E. M., Uriel, S., Greisler, H. P. & McIntire, L. V. Therapeutic neovascularization: contributions from bioengineering. Tissue Eng. 11, 567–584 (2005).
Koike, N. et al. Tissue engineering: Creation of long-lasting blood vessels. Nature 428, 138–139 (2004).
Fischbach, C. & Mooney, D. J. Polymers for pro- and anti-angiogenic therapy. Biomaterials 28, 2069–2076 (2007).
Ehrbar, M. et al. The role of actively released fibrin-conjugated VEGF for VEGF receptor 2 gene activation and the enhancement of angiogenesis. Biomaterials 29, 1720–1729 (2008).
Gao, J. & Messner, K. Quantitative comparison of soft tissue-bone interface at chondral ligament insertions in the rabbit knee joint. J. Anat. 188, 367–373 (1996).
Acknowledgements
We thank R. Langer, K. Godula and A. Ratcliffe for feedback on the manuscript. M.M.S. acknowledges an ERC Individual Investigator Grant for funding, and EPSRC for the funding of E.S.P. and N.D.E.
Author information
Authors and Affiliations
Corresponding author
Supplementary information
Supplementary Information
Supplementary information (PDF 288 kb)
Rights and permissions
About this article
Cite this article
Place, E., Evans, N. & Stevens, M. Complexity in biomaterials for tissue engineering. Nature Mater 8, 457–470 (2009). https://doi.org/10.1038/nmat2441
Issue Date:
DOI: https://doi.org/10.1038/nmat2441
This article is cited by
-
Biomaterial-based platforms for tumour tissue engineering
Nature Reviews Materials (2023)
-
Neonatal rat ventricular myocytes interfacing conductive polymers and carbon nanotubes
Cell Biology and Toxicology (2023)
-
A 3D-printed molybdenum-containing scaffold exerts dual pro-osteogenic and anti-osteoclastogenic effects to facilitate alveolar bone repair
International Journal of Oral Science (2022)
-
Water as the often neglected medium at the interface between materials and biology
Nature Communications (2022)
-
Selective biofunctionalization of 3D cell-imprinted PDMS with collagen immobilization for targeted cell attachment
Scientific Reports (2022)