Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Free-standing nanoparticle superlattice sheets controlled by DNA

Abstract

Free-standing nanoparticle superlattices (suspended highly ordered nanoparticle arrays) are ideal for designing metamaterials and nanodevices free of substrate-induced electromagnetic interference. Here, we report on the first DNA-based route towards monolayered free-standing nanoparticle superlattices. In an unconventional way, DNA was used as a ‘dry ligand’ in a microhole-confined, drying-mediated self-assembly process. Without the requirement of specific Watson–Crick base-pairing, we obtained discrete, free-standing superlattice sheets in which both structure (inter-particle spacings) and functional properties (plasmonic and mechanical) can be rationally controlled by adjusting DNA length. In particular, the edge-to-edge inter-particle spacing for monolayered superlattice sheets can be tuned up to 20 nm, which is a much wider range than has been achieved with alkyl molecular ligands. Our method opens a simple yet efficient avenue towards the assembly of artificial nanoparticle solids in their ultimate thickness limit—a promising step that may enable the integration of free-standing superlattices into solid-state nanodevices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of fabrication of free-standing nanoparticle superlattice sheets.
Figure 2: Characterization of free-standing nanoparticle superlattice sheets.
Figure 3: Crumpled, nanoparticle superlattice sheet.
Figure 4: DNA regulation of the inter-particle spacing in fully attached and partially attached sheets.
Figure 5: DNA corona deformation in nanoparticle superlattices.
Figure 6: DNA-regulated plasmon coupling and mechanical properties of free-standing, monolayered nanoparticle superlattice sheets.

Similar content being viewed by others

References

  1. Jiang, C. Y., Markutsya, S., Pikus, Y. & Tsukruk, V. V. Freely suspended nanocomposite membranes as highly sensitive sensors. Nature Mater. 3, 721–728 (2004).

    Article  CAS  Google Scholar 

  2. Vendamme, R., Onoue, S. Y., Nakao, A. & Kunitake, T. Robust free-standing nanomembranes of organic/inorganic interpenetrating networks. Nature Mater. 5, 494–501 (2006).

    Article  CAS  Google Scholar 

  3. Lin, Y. et al. Ultrathin cross-linked nanoparticle membranes. J. Am. Chem. Soc. 125, 12690–12691 (2003).

    Article  CAS  Google Scholar 

  4. Jin, J., Wakayama, Y., Peng, X. & Ichinose, I. Surfactant-assisted fabrication of free-standing inorganic sheets covering an array of micrometre-sized holes. Nature Mater. 6, 686–691 (2007).

    Article  CAS  Google Scholar 

  5. Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    Article  CAS  Google Scholar 

  6. Alivisatos, A. P. et al. Organization of ‘nanocrystal molecules’ using DNA. Nature 382, 609–611 (1996).

    Article  CAS  Google Scholar 

  7. Zhang, J. P., Liu, Y., Ke, Y. G. & Yan, H. Periodic square-like gold nanoparticle arrays templated by self-assembled 2D DNA nanogrids on a surface. Nano Lett. 6, 248–251 (2006).

    Article  CAS  Google Scholar 

  8. Zheng, J. W. et al. Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs. Nano Lett. 6, 1502–1504 (2006).

    Article  CAS  Google Scholar 

  9. Nykypanchuk, D., Maye, M. M., van der Lelie, D. & Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nature 451, 549–552 (2008).

    Article  CAS  Google Scholar 

  10. Park, S. Y. et al. DNA-programmable nanoparticle crystallization. Nature 451, 553–556 (2008).

    Article  CAS  Google Scholar 

  11. Murray, C. B., Kagan, C. R. & Bawendi, M. G. Self-organization of CdSe nanocrystallines into 3-dimensional quantum-dot superlattices. Science 270, 1335–1338 (1995).

    Article  CAS  Google Scholar 

  12. Kiely, C. J., Fink, J., Brust, M., Bethell, D. & Schiffrin, D. J. Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters. Nature 396, 444–446 (1998).

    Article  CAS  Google Scholar 

  13. Pileni, M. P. Nanocrystal self-assemblies: Fabrication and collective properties. J. Phys. Chem. B 105, 3358–3371 (2001).

    Article  CAS  Google Scholar 

  14. Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O’Brien, S. & Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 439, 55–59 (2006).

    Article  CAS  Google Scholar 

  15. Kalsin, A. M. et al. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science 312, 420–424 (2006).

    Article  CAS  Google Scholar 

  16. Bigioni, T. P. et al. Kinetically driven self assembly of highly ordered nanoparticle monolayers. Nature Mater. 5, 265–270 (2006).

    Article  CAS  Google Scholar 

  17. Korgel, B. A., Fullam, S., Connolly, S. & Fitzmaurice, D. Assembly and self-organization of silver nanocrystal superlattices: Ordered ‘soft spheres’. J. Phys. Chem. B 102, 8379–8388 (1998).

    Article  CAS  Google Scholar 

  18. Collier, C. P., Saykally, R. J., Shiang, J. J., Henrichs, S. E. & Heath, J. R. Reversible tuning of silver quantum dot monolayers through the metal–insulator transition. Science 277, 1978–1981 (1997).

    Article  CAS  Google Scholar 

  19. Mueggenburg, K. E., Lin, X. M., Goldsmith, R. H. & Jaeger, H. M. Elastic membranes of close-packed nanoparticle arrays. Nature Mater. 6, 656–660 (2007).

    Article  CAS  Google Scholar 

  20. Martin, J. E., Wilcoxon, J. P., Odinek, J. & Provencio, P. Control of the interparticle spacing in gold nanoparticle superlattices. J. Phys. Chem. B 104, 9475–9486 (2000).

    Article  CAS  Google Scholar 

  21. Deegan, R. D. et al. Capillary flow as the cause of ring stains from dried liquid drops. Nature 389, 827–829 (1997).

    Article  CAS  Google Scholar 

  22. Rabani, E., Reichman, D. R., Geissler, P. L. & Brus, L. E. Drying-mediated self-assembly of nanoparticles. Nature 426, 271–274 (2003).

    Article  CAS  Google Scholar 

  23. Cubaud, T. & Fermigier, M. Faceted drops on heterogeneous surfaces. Europhys. Lett. 55, 239–245 (2001).

    Article  CAS  Google Scholar 

  24. Paterson, A. & Fermigier, M. Wetting of heterogeneous surfaces: Influence of defect interactions. Phys. Fluids 9, 2210–2216 (1997).

    Article  CAS  Google Scholar 

  25. Cheng, W., Park, N., Walter, M. T., Hartman, M. R. & Luo, D. Nanopatterning self-assembled nanoparticle superlattices by moulding microdroplets. Nature Nanotech. 3, 682–690 (2008).

    CAS  Google Scholar 

  26. Lobkovsky, A., Gentges, S., Li, H., Morse, D. & Witten, T. A. Scaling properties of stretching ridges in a crumpled elastic sheet. Science 270, 1482–1485 (1995).

    Article  CAS  Google Scholar 

  27. Cheng, W. L., Dong, S. J. & Wang, E. K. Synthesis and self-assembly of cetyltrimethylammonium bromide-capped gold nanoparticles. Langmuir 19, 9434–9439 (2003).

    Article  CAS  Google Scholar 

  28. Luo, D. The road from biology to materials. Mater. Today 6, 38–43 (2003).

    Article  CAS  Google Scholar 

  29. Li, Y. G. et al. Controlled assembly of dendrimer-like DNA. Nature Mater. 3, 38–42 (2004).

    Article  CAS  Google Scholar 

  30. Cheng, W. L., Dong, S. J. & Wang, E. K. Site-selective self-assembly of MPA-bridged CuHCF multilayers on APTMS-supported gold colloid electrodes. Chem. Mater. 15, 2495–2501 (2003).

    Article  Google Scholar 

  31. Su, K. H. et al. Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett. 3, 1087–1090 (2003).

    Article  CAS  Google Scholar 

  32. Jain, P. K., Huang, W. Y. & El-Sayed, M. A. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation. Nano Lett. 7, 2080–2088 (2007).

    Article  CAS  Google Scholar 

  33. Rechberger, W. et al. Optical properties of two interacting gold nanoparticles. Opt. Commun. 220, 137–141 (2003).

    Article  CAS  Google Scholar 

  34. Sendroiu, I. E., Mertens, S. F. L. & Schiffrin, D. J. Plasmon interactions between gold nanoparticles in aqueous solution with controlled spatial separation. Phys. Chem. Chem. Phys. 8, 1430–1436 (2006).

    Article  CAS  Google Scholar 

  35. Markutsya, S., Jiang, C. Y., Pikus, Y. & Tsukruk, V. V. Freely suspended layer-by-layer nanomembranes: Testing micromechanical properties. Adv. Funct. Mater. 15, 771–780 (2005).

    Article  CAS  Google Scholar 

  36. Lee, C., Wei, X. D., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

    Article  CAS  Google Scholar 

  37. Thaxton, C. S., Hill, H. D., Georganopoulou, D. G., Stoeva, S. I. & Mirkin, C. A. A bio-bar-code assay based on dithiothreitol-induced oligonucleotide release. Anal. Chem. 77, 8174–8178 (2005).

    Article  CAS  Google Scholar 

  38. Gilbert, P. Iterative methods for 3-dimensional reconstruction of an object from projections. J. Theor. Biol. 36, 105–117 (1972).

    Article  CAS  Google Scholar 

  39. Midgley, P. A. & Weyland, M. 3D electron microscopy in the physical sciences: The development of Z-contrast and EFTEM tomography. Ultramicroscopy 96, 413–431 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is partially supported by NYSTAR and the NSF CAREER award (grant number: 0547330). We acknowledge the use of the facilities of the Cornell Centre for Materials Research, which is supported through NSF Grant DMR 0520404, part of the NSF MRSEC Program. D.A.M. and J.J.C. acknowledge financial support from IRG-1 of NSF-MRSEC (CCMR). S.J.T. is a recipient of the National Science Scholarship awarded by the Agency for Science, Technology and Research, Singapore (A-STAR). We also acknowledge L. Ding, M. Hartman, C. Y. Hui, J. Kahn, J. C. March and N. Park for their critical reading of our manuscript.

Author information

Authors and Affiliations

Authors

Contributions

W.L.C. and D.L. conceived and designed the experiments. W.L.C., M.C., J.C and S.T. carried out the experiments. W.L.C., M.C., S.T, C.U., D.M. and D.L. analysed the data and discussed the results. W.L.C., M.C., S.T. and D.L. co-wrote the paper. All authors commented on the manuscript.

Corresponding author

Correspondence to Dan Luo.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, W., Campolongo, M., Cha, J. et al. Free-standing nanoparticle superlattice sheets controlled by DNA. Nature Mater 8, 519–525 (2009). https://doi.org/10.1038/nmat2440

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2440

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing